Circle Area and Perimeter


\begin{tikzpicture}

  % grid
  \draw[help lines] (-2,-2) grid (2,2);
  
  % origin
  \draw[red, line width=.1mm] (-0.1,-0.1) -- (0.1,0.1)
    (0.1,-0.1) -- (-0.1,0.1);
  \coordinate[label={[red]above left:$O$}] (O) at (0,0);
  \coordinate[label={[red]above right:$R$}] (R) at (2,0);
  \coordinate[label={[red]above right:$Q$}] (Q) at (0,2);
  \coordinate[label={[red]above right:$C$}] (C) at (2,2);
  
  %radius
  \draw[fill=blue!20,fill opacity=0.1] (O) -- (R) -- (C) -- (Q) -- cycle;
  
  % triangle 
  \draw [black] (0,0) circle [radius=2];
  \drawbrace{O}{R}{2mm}{blue}{$r$}{0}{-4mm}{mirror};
  
  \node [thick] at (1,1) {$A_{\square}=r^{2}$};
  \node [thick] at (0,-1) {$A_{\bullet}=\pi*r^{2}$};
  \node [thick] at (0,-1.5) {$P_{\bullet}=2*\pi*r$};
  
\end{tikzpicture}

A circle contains the maximal surface in relation to its perimeter. This translates to spheres as well, since a sphere contains the maximal volume in relation to its surface.

Equation of a Circle


\begin{tikzpicture}

  % grid
  \draw[help lines] (-2,-2) grid (2,2);
  
  % origin
  \draw[red, line width=.1mm] (-0.1,-0.1) -- (0.1,0.1)
    (0.1,-0.1) -- (-0.1,0.1);
  \coordinate[label={[red]above left:$O$}] (O) at (0,0);
  \coordinate[label={[red]above right:$R$}] (R) at (2,0);
  \coordinate[label={[red]above right:$Q$}] (Q) at ({cos(30)},{2*cos(30)});
  
  %projection
  \draw[black,dotted] (Q) -- ({cos(30)},0);
  \node [square,minimum size=1mm,dotted] at ({cos(30)-0.1},0.1) [draw] (d2) [black] {};
  
  \drawpoint{Q}{.5mm}{red};
  
  %radius
  %\draw[fill=blue!20,fill opacity=0.1] (O) -- (R);
  
  % circle 
  \draw [black] (0,0) circle [radius=2];
  \draw [black] (O) -- (R);
  \draw [black] (O) -- (Q);
  
  \drawbrace{O}{R}{2mm}{blue}{$r$}{0}{-4mm}{mirror};
  \drawbrace{O}{Q}{2mm}{blue}{$r$}{-4mm}{0}{};
  
\end{tikzpicture}

\begin{eqnarray*}
(x-x_{0})^{2}+(y-y_{0})^{2} &=& r^{2}
\end{eqnarray*}

where the parameters $x_{0}$ and $y_{0}$ represent an offset from the origin point $O$ (usually both equal to zero if the circle is centred in the origin point).


fuss/mathematics/geometry/shapes/circles.txt ยท Last modified: 2022/04/19 08:28 by 127.0.0.1

Access website using Tor Access website using i2p Wizardry and Steamworks PGP Key


For the contact, copyright, license, warranty and privacy terms for the usage of this website please see the contact, license, privacy, copyright.