Polynomial Expansions


\begin{eqnarray*}
(x+y)^{2} &=& x^2 + y^2 + x*y & \\
(x+y)^{3} &=& x^{3}+3*x^{2}*y+3*x*y^{2}+y^{3}

\end{eqnarray*}

Binomial Formula


(x+y)^{n} &=& C_{0}^{n}{x}y^{0}+C_{1}^{n}{x}{y}+C_{2}^{n}{x}y^{2} + ... + C_{n}^{n-1}{x^1}{y^{n-1}}+C_{n}^{n}x^{0}y^{n}

Implementations

Linearly Map a Value in a Range into another Range

Given a value $s$ such that $s \in [a_{1},a_{2}]$ we can map $s$ onto a different range such that $s \in [b_{1}, b_{2}]$ by using the formula:

\begin{eqnarray*}
t &=& b_{1} + \frac{(s-a_{1})(b_{2}-b_{1})}{a_{2}-a_{1}}
\end{eqnarray*}

Implementations

Invert a Range

Given a range $A$ represented as an ordered set $A=\{ x_{i} \mid i=\vert 1..n \vert, x_{i} \in A \}$, the inverted-range ordered set $B$ is obtained using the formula $max(A) - A_{i} + min(A)$ such that $B=\{ y_{i} \mid i=\vert 1..n \vert, y_{i}=max(A) - A_{i} + min(A) \}$ where $max$ is a function that returns the largest element in a set.

Or, in other words, the set $B$ is the sequential union of all elements $B_{i}$ obtained via the formula $max(A) - A_{i} + min(A)$ as follows:

\begin{eqnarray*}
\bigcup_{i=1}^n B_{i} = \{ max(A) - A_{i} + min(A) \mid A_{i} \in A \}
\end{eqnarray*}


fuss/mathematics/algebra.txt ยท Last modified: by office

Wizardry and Steamworks

© 2025 Wizardry and Steamworks

Access website using Tor Access website using i2p Wizardry and Steamworks PGP Key


For the contact, copyright, license, warranty and privacy terms for the usage of this website please see the contact, license, privacy, copyright.