Pick's Theorem

Given a lattice (a grid with equally disposed points), the following method can be used to measure the area of any given whole polygon.

  % grid
  \draw[help lines,step=1] (-2,-2) grid (2,2);
  % coordinates outer
  \coordinate[label={[black]left:$A$}] (A) at (-1,1);
  \coordinate[label={[black]below:$B$}] (B) at (-1,-1);
  \coordinate[label={[black]right:$C$}] (C) at (1,-1);
  \coordinate[label={[black]right:$D$}] (D) at (2,2);
  % coordinate inner
  \coordinate[label={[black]right:$E$}] (E) at (0,0);
  \coordinate[label={[black]right:$F$}] (F) at (1,0);
  \coordinate[label={[black]right:$G$}] (G) at (1,1);
  \coordinate[label={[black]right:$H$}] (H) at (0,1);
  % polygon 
  \draw[black, line width=.1mm] (A) -- (B) -- (C) -- (D) -- cycle;
  % outer lattice points
  % inner lattices points


A_{\blacksquare} &=& {\color{green}i}+\frac{{\color{red}b}}{2}-1


fuss/mathematics/geometry/shapes.txt ยท Last modified: 2017/02/22 18:30 (external edit)

Access website using Tor Access website using i2p

For the copyright, license, warranty and privacy terms for the usage of this website please see the license, privacy and plagiarism pages.