Deriving Heron's Formula for the Area of a Triangle



\begin{tikzpicture}
  % grid
  \draw[help lines] (-3,-3) grid (5,3);
  
  % coordinates
  \coordinate[label={[black]right:$B$}] (B) at (1.5,2.5);
  \coordinate[label={[black]left:$C$}] (C) at (-2.5,-2);
  \coordinate[label={[black]right:$A$}] (A) at (3,-2);
  
  % height projection
  \coordinate[label={[black]south east:$D$}] (D) at (1.5,-2);
  \drawpoint{D}{.5mm}{black}
  
  % side labels
  \coordinate[label={[violet]south east:$a$}] (a) at (-0.75,0.75);
  \coordinate[label={[green]south east:$c$}] (c) at (2.5,0);
  \coordinate[label={[red]south east:$h$}] (h) at (1,0);
  
  % triangle 
  %\draw[black, line width=.1mm] (A) -- (B) -- (C) -- cycle;
  \draw[green, line width=.1mm] (A) -- (B);
  \draw[violet, line width=.1mm] (B) -- (C);
  \draw[blue, line width=.1mm] (A) -- (C);
  
  % perpendicular
  \draw[dashed, red, line width=.1mm] (B) -- (D);
  
  % braces
  %\drawbrace{B}{C}{6mm}{blue}{$a$}{0}{-8mm}{mirror}
  %\drawbrace{A}{B}{6mm}{green}{$c$}{-6mm}{6mm}{mirror}
  %\drawbrace{A}{C}{6mm}{cyan}{$b$}{8mm}{4mm}{}
  %\drawbrace{A}{D}{2mm}{red}{$h$}{-4mm}{0mm}{mirror}
  \drawbrace{D}{A}{2mm}{black}{$x$}{0mm}{-4mm}{mirror}
  \drawbrace{C}{D}{2mm}{black}{${\color{blue}b}-x$}{0mm}{-4mm}{mirror}
  
\end{tikzpicture}

Let:

\begin{eqnarray*}
\overline{BA} &=& {\color{green}c} \\
\overline{BC} &=& {\color{violet}a} \\
\overline{CA} &=& {\color{blue}b} \\
\overline{BD} &=& {\color{red}h} \\
\overline{DA} &=& x 
\end{eqnarray*}

thus:

\begin{eqnarray*}
\overline{CD} &=& {\color{blue}b}-x \\
\end{eqnarray*}

We apply Pythagoras in the triangle $\widehat{BDA}$ in order to extract $x$:

\begin{eqnarray*}
x^{2} + {\color{red}h}^{2} &=& {\color{green}c}^{2} \\
&\Leftrightarrow& \\
x &=& \sqrt{{\color{green}c}^{2}-{\color{red}h}^{2}}
\end{eqnarray*}

in order to obtain one equation.

We apply Pythagoras in the triangle $\widehat{BCD}$ and obtain:

\begin{eqnarray*}
({\color{blue}b}-x)^{2} + h^{2} &=& {\color{violet}a}^{2} \\
&\Leftrightarrow& \\
({\color{blue}b}-x)^{2} &=&  {\color{violet}a}^{2} - h^{2} \\
&\Leftrightarrow& \\
{\color{blue}b}^{2} - 2{\color{blue}b}x + x^{2} &=& {\color{violet}a}^{2} - h^{2}
\end{eqnarray*}

in order to obtain another equation.

Then we substitute $x$ from the first equation into the second and obtain:

\begin{eqnarray*}
{\color{blue}b}^{2} - 2{\color{blue}b}\sqrt{{\color{green}c}^{2} - {\color{red}h}^{2}} + {\color{green}c}^{2} - {\color{red}h}^{2} &=& {\color{violet}a}^{2} - h^{2}
\end{eqnarray*}

So, by merging the two equations we now have a new equation in ${\color{violet}a}$, ${\color{blue}b}$, ${\color{green}c}$ and ${\color{red}h}$ and we just need to extract ${\color{red}h}$ in order to hopefully reduce the equation to Heron's formula.

Let's collect and get rid of the square root since it's a pain:

\begin{eqnarray*}
{\color{blue}b}^{2} + {\color{green}c}^{2} - {\color{violet}a}^{2} &=& 2{\color{blue}b}\sqrt{{\color{green}c}^{2} - {\color{red}h}^{2}} \\
&\Leftrightarrow& \\
({\color{blue}b}^{2} + {\color{green}c}^{2} - {\color{violet}a}^{2})^{2} &=& 4{\color{blue}b}^{2}({\color{green}c}^{2} - {\color{red}h}^{2})
\end{eqnarray*}

and then let's collect for ${\color{red}h}$:

\begin{eqnarray*}
\color{red}h}^{2} &=& {\color{green}c}^{2} - \frac{({\color{blue}b}^{2} + {\color{green}c}^{2} - {\color{violet}a}^{2})^{2}}{4{\color{blue}b}^{2}}
\end{eqnarray*}

Now let's get to a common denominator:

\begin{eqnarray*}
\color{red}h}^{2} &=& \frac{4{\color{blue}b}^{2}{\color{green}c}^{2} - ({\color{blue}b}^{2} + {\color{green}c}^{2} - {\color{violet}a}^{2})^{2}}{4{\color{blue}b}^{2}}
\end{eqnarray*}

We know that the permitter is expressed as $P={\color{violet}a}+{\color{blue}b}+{\color{green}c}$ so we need to shuffle the timers in some form of equation where we can express ourselves in terms of $P$ instead of ${\color{violet}a}$, ${\color{blue}b}$ and ${\color{green}c}$:

\begin{eqnarray*}
{\color{red}h}^{2} &=& \frac{4{\color{blue}b}^{2}{\color{green}c}^{2} - ({\color{blue}b}^{2} + {\color{green}c}^{2} - {\color{violet}a}^{2})^{2}}{4{\color{blue}b}^{2}} \\
&\Leftrightarrow& \\
{\color{red}h}^{2} &=& \frac{(2{\color{blue}b}{\color{green}c})^{2} - ({\color{blue}b}^{2} + {\color{green}c}^{2} - {\color{violet}a}^{2})^{2}}{4{\color{blue}b}^{2}}
\end{eqnarray*}

Now, from the rule of polynomials we know that:

\begin{eqnarray*}
P^{2} - Q^{2} &=& (P + Q )( P - Q )
\end{eqnarray*}

so, we apply that to the nominator, and obtain:

\begin{eqnarray*}
{\color{red}h}^{2} &=& \frac{(2{\color{blue}b}{\color{green}c} + {\color{blue}b}^{2} + {\color{green}c}^{2} - {\color{violet}a}^{2})(2{\color{blue}b}{\color{green}c} - {\color{blue}b}^{2} - {\color{green}c}^{2} + {\color{violet}a}^{2})}{4{\color{blue}b}^{2}}
\end{eqnarray*}

We observe that now we have two second-order polynomials at the denominator:

\begin{eqnarray*}
2{\color{blue}b}{\color{green}c} + {\color{blue}b}^{2} + {\color{green}c}^{2} &=& \\
{\color{blue}b}^{2} + 2{\color{blue}b}{\color{green}c} + {\color{green}c}^{2} &=& \\
({\color{blue}b} + {\color{green}c})^{2}
\end{eqnarray*}

and:

\begin{eqnarray*}
2{\color{blue}b}{\color{green}c} - {\color{blue}b}^{2} - {\color{green}c}^{2} &=& \\
-({\color{blue}b}^{2} - 2{\color{blue}b}{\color{green}c} + {\color{green}c}^{2})^{2} &=& \\
-({\color{blue}b}-{\color{green}c})^{2}
\end{eqnarray*}

So we can substitute them back into the nominator of the original equation:

\begin{eqnarray*}
{\color{red}h}^{2} &=& \frac{(({\color{blue}b} + {\color{green}c})^{2} - {\color{violet}a}^{2})({\color{violet}a}^{2}-({\color{blue}b}-{\color{green}c}^{2})^{2}}{4{\color{blue}b}^{2}}
\end{eqnarray*}

and again, since the polynomial rules says that:

\begin{eqnarray*}
P^{2} - Q^{2} &=& (P + Q )( P - Q )
\end{eqnarray*}

we can expand the nominator further to:

\begin{eqnarray*}
{\color{red}h}^{2} &=& \frac{({\color{blue}b} + {\color{green}c} + {\color{violet}a})({\color{blue}b} + {\color{green}c} - {\color{violet}a})({\color{violet}a} + {\color{blue}b} - {\color{green}c})({\color{violet}a} - {\color{blue}b} + {\color{green}c})}{4{\color{blue}b}^{2}}
\end{eqnarray*}

and arrange the terms:

\begin{eqnarray*}
{\color{red}h}^{2} &=& \frac{({\color{violet}a} + {\color{blue}b} + {\color{green}c})(-{\color{violet}a} + {\color{blue}b} + {\color{green}c})({\color{violet}a} + {\color{blue}b} - {\color{green}c})({\color{violet}a} - {\color{blue}b} + {\color{green}c})}{4{\color{blue}b}^{2}}
\end{eqnarray*}

Now we only know that $P={\color{violet}a}+{\color{blue}b}+{\color{green}c}$ so we have to do something about the minus (-) signs in order to get to the addition.

\begin{eqnarray*}
{\color{red}h}^{2} &=& \frac{({\color{violet}a} + {\color{blue}b} + {\color{green}c})({\color{violet}a} + {\color{blue}b} + {\color{green}c} - 2{\color{violet}a})({\color{violet}a} + {\color{blue}b} + {\color{green}c} - 2{\color{green}c})({\color{violet}a} + {\color{blue}b} + {\color{green}c} - 2{\color{blue}b})}{4{\color{blue}b}^{2}}
\end{eqnarray*}

and we can substitute $P$ now:

\begin{eqnarray*}
{\color{red}h}^{2} &=& \frac{P(P-2{\color{violet}a})(P-2{\color{green}c})(P-2{\color{blue}b})}{4{\color{blue}b}^{2}}
\end{eqnarray*}

and collect ${\color{red}h}$:

\begin{eqnarray*}
{\color{red}h} &=& \frac{\sqrt{P(P-2{\color{violet}a})(P-2{\color{green}c})(P-2{\color{blue}b})}}{2{\color{blue}b}}
\end{eqnarray*}

Recall that the area of the triangle $ABC$ can be written as:

\begin{eqnarray*}
A &=& \frac{{\color{blue}b}{\color{red}h}}{2}
\end{eqnarray*}

So we can substitute ${\color{red}h}$ into that formula:

\begin{eqnarray*}
A &=& \frac{\sqrt{P(P-2{\color{violet}a})(P-2{\color{green}c})(P-2{\color{blue}b})}}{4}
\end{eqnarray*}

Now, if you recall Heron's formula, it is expressed as a semi-permitter $p$ instead of $P$, so we need to place that $\frac{1}{4}$ inside the square root and distribute it to each of the terms:

\begin{eqnarray*}
A = \sqrt{\frac{P(P-2{\color{violet}a})(P-2{\color{green}c})(P-2{\color{blue}b})}{16}} &=& \\
\sqrt{\frac{P}{2}\frac{(P-2{\color{violet}a})}{2}\frac{(P-2{\color{green}c})}{2}\frac{(P-2{\color{blue}b})}{2}}
\end{eqnarray*}

and distribute again:

\begin{eqnarray*}
A &=& \sqrt{\frac{P}{2}(\frac{P}{2}-\frac{2{\color{violet}a}}{2})(\frac{P}{2}-\frac{2{\color{green}c}}{2})(\frac{P}{2}-\frac{2{\color{blue}b}}{2})}
\end{eqnarray*}

Now we know that the semi-permitter $p$ is $p=\frac{P}{2}$ so we can substitute it into the formula:

\begin{eqnarray*}
A &=& \sqrt{p(p-{\color{violet}a})(p-{\color{green}c})(p-{\color{blue}b})}
\end{eqnarray*}

which is Heron's formula which we had to derive.


mathematics/geometry/shapes/triangles/heron.txt ยท Last modified: 2022/04/19 08:28 by 127.0.0.1

Access website using Tor Access website using i2p Wizardry and Steamworks PGP Key


For the contact, copyright, license, warranty and privacy terms for the usage of this website please see the contact, license, privacy, copyright.