Polynomial Expansions


\begin{eqnarray*}
(x+y)^{2} &=& x^2 + y^2 + x*y & \\
(x+y)^{3} &=& x^{3}+3*x^{2}*y+3*x*y^{2}+y^{3}

\end{eqnarray*}

Binomial Formula


(x+y)^{n} &=& C_{0}^{n}{x}y^{0}+C_{1}^{n}{x}{y}+C_{2}^{n}{x}y^{2} + ... + C_{n}^{n-1}{x^1}{y^{n-1}}+C_{n}^{n}x^{0}y^{n}

Linearly Map a Value in a Range into another Range

Given a value $s$ such that $s \in [a_{1},a_{2}]$ we can map $s$ onto a different range such that $s \in [b_{1}, b_{2}]$ by using the formula:

\begin{eqnarray*}
t &=& b_{1} + \frac{(s-a_{1})(b_{2}-b_{1})}{a_{2}-a_{1}}
\end{eqnarray*}

Implementations


fuss/mathematics/algebra.txt ยท Last modified: 2017/02/22 18:30 (external edit)

Access website using Tor Access website using i2p


For the copyright, license, warranty and privacy terms for the usage of this website please see the license, privacy and plagiarism pages.