Table of Contents



The code performs the follows the reasoning: for a chosen $a$ and $b$, select a random $x$ with $x \in [0, a)$ and $y$ with $y \in [0, b)$. If and only if the equation of the ellipse in standard form:

(\frac{x}{a})^{2}+(\frac{y}{b})^{2} &\le& 1

is satisfied, then the generated $x$ and $y$ values describe a point $(x, y)$ which lies within the ellipse's perimeter. Otherwise, select new values for $x$ and $y$ and loop until the equation is satisfied.


//    Copyright (C) 2015 Wizardry and Steamworks - License: GNU GPLv3    //
vector wasEllipsePoint(float a, float b) {
    float x = llPow(-1, 1 + (integer) llFrand(2)) * llFrand(a);
    float y = llPow(-1, 1 + (integer) llFrand(2)) * llFrand(b);
    if(llPow(x/a,2) + llPow(y/b,2) <= 1)
        return <x, y, 0>;
    return wasEllipsePoint(a, b);

fuss/algorithms/geometry/point_generation/ellipse/standard.txt ยท Last modified: 2017/02/22 18:30 (external edit)

Access website using Tor Access website using i2p

For the copyright, license, warranty and privacy terms for the usage of this website please see the license, privacy and plagiarism pages.