Table of Contents



The code performs the follows the reasoning: for a chosen $a$ and $b$, select a random $x$ with $x \in [0, a)$ and $y$ with $y \in [0, b)$. If and only if the equation of the ellipse in standard form:

(\frac{x}{a})^{2}+(\frac{y}{b})^{2} &\le& 1

is satisfied, then the generated $x$ and $y$ values describe a point $(x, y)$ which lies within the ellipse's perimeter. Otherwise, select new values for $x$ and $y$ and loop until the equation is satisfied.

Once a point within that ellipse is generated, we rotate the point on an arc described by the specified angle $\alpha$ (in radians):

x &\mapsto& x*\cos{\alpha} + y\sin{\alpha} \\
y &\mapsto& x*\sin{\alpha} - y\cos{\alpha}

in order to obtain the rotated point.


//    Copyright (C) 2015 Wizardry and Steamworks - License: GNU GPLv3    //
// the angle (in radians) o represents a rotation in the trigonometric 
// sense around the Ox axis where O represents the ellipse center
vector wasRotatedEllipsePoint(float a, float b, float o) {
    float x = llPow(-1, 1 + (integer) llFrand(2)) * llFrand(a);
    float y = llPow(-1, 1 + (integer) llFrand(2)) * llFrand(b);
    if(llPow(x/a,2) + llPow(y/b,2) <= 1)
        return <x*llCos(o) + y*llSin(o), x*llSin(o) - y*llCos(o), 0>;
    return wasRotatedEllipsePoint(a, b, o);

fuss/algorithms/geometry/point_generation/ellipse/rotated.txt ยท Last modified: 2017/02/22 18:30 (external edit)

Access website using Tor Access website using i2p

For the copyright, license, warranty and privacy terms for the usage of this website please see the license, privacy and plagiarism pages.