
The Great Wanderer: A Markov Approach to
Autonomous Rovers

Wizardry and Steamworks [TBA]1

e-mail: office@was.fm
1Wizardry and Steamworks, Consulting Group (http://was.fm)

December 7, 2014

Abstract

The Great Wanderer is an autonomous constant-memory rover
based on weighted probabilistic automata. The rover has been pro-
totyped, for convenience, in a Virtual World. This paper borrows con-
cepts from automata theory, more precisely Markov chains, in order to
show that a rover can be made to follow complicated pathways on its
own with minimal expert guidance. The suggested mode of operation
will hopefully be useful for practical scenarios such as cartography.
The semantics are simple to understand while having in mind a sym-
metric and efficient design that would be easy to fabricate as a real
application.

1 Introduction
One of the difficulties of autonomous rovers is that they lack the intuition,
or are already too burdened in order to carry devices that allow them to
adapt to the environment. A difficult reasoning problem lies in creating an
autonomous rover that is able to traverse a space populated with obstacles,
without prior knowledge of the placement of the objects and without hu-
man intervention. One solution is to keep track of previous coordinates and
progressively explore, based on what has not been already visited. However,
that implies that the storage space required to store the previous destinations

1

is proportional to the space that the rover has to explore. This may not be
feasible in practical scenarios where the space to explore would require an
unknown amount of storage space in order to keep record of all the previously
visited locations. An example could be a rover that is designed to explore
the bottom of the ocean floor, or a robot that should adapt to obstacles and
unforeseeable pathways in space.

This paper describes a rover design, inspired by Markov (Máрков, 1906)
automata, that is able to explore a space containing arbitrarily-placed obsta-
cles without expert intervention (Harmon & King, 1985; Simmons & Koenig,
1995) .We leverage concepts from automata theory (Hopcroft, Motwani, &
Ullman, 1979) and statistics (Bar-Shalom, Li, & Kirubarajan, 2004) in or-
der to introduce an automaton that is able to adapt to any surrounding
environment. We offer experimental representations of collisions for a Great
Wanderer rover that has been set-up to explore an enclosed space while unat-
tended. Going one step further, the article explains that goal-based pathfind-
ing can be implemented by just manipulating the list of probabilities given
the relative position between the Great Wanderer and its desired destination.

The Great Wanderer was built in a Virtual World (Eschenbrenner, Nah,
& Siau, 2008) (VW) called Second Life (Linden Lab, 2007), which is based on
the Havok game engine (Kanode & Haddad, 2009) that implements physics,
as well as offering an internal programming language called Linden Scripting
Language (LSL). The decision to implement the Great Wonderer in a VW
allowed us to abstract away from gravity by canceling out the force exerted on
the Great Wanderer. Given the calculations presented in the Background 1
section, the rover does not require that level of abstraction because it is able
to handle only a subset of directions. An advantage of LSL is that program
states can be observed within the syntax of the programming language by
using the state clause which makes the language an attractive programming
environment. VWs have shown that they are capable of hosting simulator
prototypes (L. & E., 2012) as well as providing an easily accessible platform
for science and education (Virtual Islands for Better Education, 2011).

Background
The Great Wanderer automaton is inspired by Markov chains and uses prob-
abilities to condition the transitions between states that correspond to the
direction.

2

Definition 1.1. Given a finite set D containing arbitrary directions:

D = {d1, d2, . . . , dn}

and a corresponding set of probabilities P :

P = {p1, p2, . . . , pn}

such that |D| = |P |. The bijective function f :

f : P 7→ D

maps elements from the set of probabilities P to the set of directions D in
order.

The Great Wanderer automata does not strictly conform to the Markov
property of a memoryless process (Saul & Jordan, 1999) because it does use
memory to store probabilities. However, the advantage compared to a visitor
system is that previous locations are not stored, but rather that the storage
is of a fixed size and modified in-place whenever a direction is obstructed.
Consequentially, the previously visited locations are stored within the entropy
of the list of probabilities. The memory requirements (Olivera & Viera, 2007)
are proportional to the directions that the Great Wanderer can move along
rather than proportional to the space to be explored. This follows from
Definition 1.1 because both the set of directions D and the set of probabilities
P are finite and have the same cardinality, with f being an bijective function,
such that adding directions to D would only linearly increase the size of the
set of probabilities P . The choice of eliminating the requirement to store
previously visited locations is more convenient because the size of the space to
explore is, in many practical applications, unknown compared to the number
of directions of movement that are finite.

By mapping the automata states to axes of movement of the Great Wan-
derer as shown in Figure 1, we can see the number of states is proportional
to the number of directions. Every state up, front, right, down, back and
left is accessible from the central compute state that decides to what state
the next transition is made.

Internally, the Great Wanderer maintains a map of directions to proba-
bilities that change whenever the Great Wanderer senses a collision (Zheng
& Hemami, 1985) with an object on either senses of the x, y or z axes. In
order to obtain the experimental results illustrated in this paper, the Great

3

z

x

y

defaultstart

compute

up

front

right

down

back

left

1
pu 1 pf

1
pr

1

pd1pb

1
pl

1

Figure 1: The automata that Great Wanderer uses is illustrated as projected on
top of the directional axes x, y, z, representing the possible directions of move-
ment of the Great Wanderer. The default state is used for setting up the initial
parameters of the Great Wanderer, the compute state is used to compute the next
direction and there is no end state.

Wanderer conveniently used collisions in order to sense obstacles. In a real
world scenario, one can assume that no physical collision with an object is
necessary and that sensors (Magori & Walker, 1987) could be used to detect
a blocked path rather than damaging the rover.

Automata Design

The Great Wanderer autoamta in Figure 1 will initially divide the probabili-
ties of movement equally between the states describing the possible directions
of movement as shown in Figure 2. For six directions of movement all di-

4

rections are equally weighted, thus their probabilities of being chosen are
initially equal.

[up, front, right, down, back, left] 7→
[0.16, 0.16, 0.16, 0.16, 0.16, 0.16]

Figure 2: An initial configuration of the Great Wanderer with six possible direc-
tions of movement such that all directions are mapped to an initial set of equally
weighted probabilities.

After detecting an object, the Great Wanderer returns to the compute
state where a cumulative probability algorithm is used (Appendix 11) in
order to select a direction. The prototype built in Second Life uses the
range [0, 1] for all probabilities in P as per Definition 1.2. Depending on the
implementation, it is possible to scale the bounds to other values as long as
the invariant I is preserved.

Definition 1.2. Given a list of probabilities P , used by the Great Wanderer:

P = {p1, p2, . . . , pn}

all the elements pi ∈ P are bounded such that:

∀pi ∈ P : < 7→ [0,M]

where M is an upper bound constant, such that M : < 7→ <+.

The algorithm first sorts both the direction and the probability list using
a Quicksort (Foley & Hoare, 1971) implementation (Appendix 10) in de-
creasing order, picks a random value ρ : < 7→ [0, 1] and then proceeds to add
up the smallest probabilities until the randomly picked value ρ is exceeded
(Appendix 11).

Definition 1.3. Given any set of probabilities P :

P = {p1, p2, . . . , pn}

sorted in increasing order such that ∀pi, pi ≤ pi+1, such that the sum of all
elements in P will always add up to a constant value

∑n
i pi = const.

5

Definition 1.4. Let there be a recursive function σ:

σ(pi) =

{
i, pi ≥ ρ
σ(pi + pi−1)

that will return the index i of the last summed probability pi to exceed ρ.
Based on the index i returned by the function σ and via Definition 1.1, the
Great Wanderer will then pick the direction di as the next traveling direction.

In case the Great Wanderer collides along a direction, the probability for
that direction will be decreased by a factor ε and then the remainder will be
distributed equally to all other directions (Definition 1.5).

Definition 1.5. Given a set of directions D:

D = {d1, d2, . . . , dn}

and a set of probabilities P :

P = {p1, p2, . . . , pn}

If an obstacle is encountered along any direction dx ∈ D, a coefficient
ε : < 7→ [0, px] is subtracted from px and redistributed to the other probabilities
in P in order to obtain a new set of probabilities P ′:

P ′ = {px − ε, px+1 +
ε

n− 1
, . . . , px+n−1 +

ε

n− 1
}

ε : < 7→ [0, px]

thereby decreasing the probability that the Great Wanderer will travel along
the direction dx.

By distributing the subtracted factor ε to the rest of probabilities in P ,
when a path is blocked, ensures that the sum of all probabilities for all
directions will remain constant.

Lemma 1.1. The Great Wanderer will always preserve the same invariant:

I =
n∑

i=1

pi = const

regardless of what collisions occur on any direction di ∈ D.

6

It is shown in Proof 1.1, by induction over the number of directions of
movement, that the invariant from Lemma 1.1 holds regardless of the direc-
tion di ∈ D along which a collision may have occurred.

Proof 1.1. Given a finite set of directions D:

D = {d1, d2, . . . , dn}

and a corresponding set of probabilities P (from Definition 1.1):

P = {p1, p2, . . . , pn}

Summing up the probabilities in P , we obtain I:

I =
n∑

i=1

pi = const

Suppose that a collision occurs along direction d1. Following Defini-
tion 1.5, we know that the resulting adjusted set P will become:

P1 = {p1 − ε, p2 +
ε

n− 1
, . . . , pn +

ε

n− 1
}

ε : < 7→ [0, px]

Now, by summing up the elements of the resulting set P1, we obtain I I1
after the collision:

I1 =
n∑

i=1

pi =

= p1 − ε+ p2 +
ε

n− 1
+ p3 +

ε

n− 1
+ . . .+ pn +

ε

n− 1

= p1 + p2 + p3 + . . .+ pn − ε+ (n− 1)
ε

n− 1
= p1 + p2 + p3 + . . .+ pn

which is equal to I before the collision even occurred. The same calculations
apply by using Definition 1.5 for all directions in di ∈ D. The invariants
I1, I2, . . ., In are obtained and via Definition 1.3 we also know that all the
invariants add to a constant, such that:

7

I1 ≡ I2 ≡ . . . ≡ In =
n∑

i=1

pi = const

which shows that Lemma 1.1 holds regardless on what direction a collision
occurs.

The Great Wanderer conveniently checks its own correctness after every
collision or seeding event in the compute state by adding the probabilities in
the list and reporting any violation of the invariant to the user. The VW
that the prototype was built in implements only mechanics and additionally
the API provides a way via the sensor events to sense objects. For the
built prototype, collisions were chosen instead of using the proximity detec-
tion features of the VW in order to simplify the code and reduce the stress
imposed on the simulator (ie: by avoiding distance calculations between the
Great Wanderer and the obstacles). In a real world scenario various types
of sensors could be used to distinguish between various types of obstacles.
Given different types of detectors ε could represent a composition of multiple
parameters depending on the type of the application and the environment
that the Great Wander must explore.

After successive collisions on a certain direction, the probability for that
direction decreases such that the Great Wanderer is more likely to choose a
direction that has experienced less collisions than the current one.

Case Example

Suppose that at some point the map of direction to probabilities is the one
illustrated in Figure 3.

[up, front, right, down, back, left] 7→
[0.23, 0.12, 0.45, 0.01, 0.12, 0.07]

Figure 3: An arbitrary configuration of the Great Wanderer at some point in
time.

The Great Wanderer uses a modified Quicksort algorithm to preserve
the mapping of directions to probabilities and to sort both lists as shown in
Firgure 4.

8

[right, up, front, back, left, down] 7→
[0.45, 0.23, 0.12, 0.12, 0.07, 0.01]

Figure 4: An arbitrary configuration of the Great Wanderer at some point in
time.

Now that the map is sorted, the Great Wanderer picks a random number
ρ in the interval [0, 1]. Let us suppose that value ρ = 0.32. The Great
Wanderer starts to compare and add-up the smaller probabilities until they
exceed the value of ρ as can be seen in Figure 5.

[down] 7→ [0.01] � ρ = 0.32

[left] 7→ [0.01 + 0.07] � ρ = 0.32

[back] 7→ [0.01 + 0.07 + 0.12] � ρ = 0.32

[front] 7→ [0.01 + 0.07 + 0.12 + 0.12] = ρ = 0.32

Figure 5: The Great Wanderer adds-up the smaller probabilities following the
sorted map from Figure 4 and stops when the value exceeds a randomly generated
number in the range [0, 1] in order to determine the next direction.

Since the last direction front is greater or equal to ρ, the Great Wanderer
would, in this case, commute to the front state and move front until the
next occurring collision. When the next collision occurs, the front probability
is decreased (Definition 1.5) in the map between directions and probabilities
and the Great Wanderer commutes to the compute state and the same pro-
cedure repeats.

The reason for choosing the suggested cumulative probability algorithm
from Definition 1.4 is that the directions with the smallest probabilities are
still given a chance to be selected. This is particularly useful because it
allows the Great Wanderer to overcome obstacles while still maintaining the
current direction of travel. A good example thereof would be an object placed
in the current traveling direction of the Great Wanderer. When a collision
occurs, if the Great Wanderer would select only the highest probability, then
the Great Wanderer would move away from the obstacle in any opposed

9

sense. By giving directions with lower probabilities a chance to be selected,
the resulting behavior is that the Great Wanderer attempts to overcome the
obstacle by moving along its surface.

2 Pathfinding
In order to make the Great Wanderer reach a precise destination the list of
probabilities can be seeded in order to exert an overall tendency of movement.

Definition 2.1. Inducing a tendency of movement along a direction is the
converse of a collision along that direction. Given a finite set of directions
D:

D = {d1, d2, . . . , dn}

and a corresponding set of probabilities P (from Definition 1.1):

P = {p1, p2, . . . , pn}

in order to induce a tendency along any direction dx ∈ D, a coefficient ε :
< 7→ [0, px] is added to px and subtracted from all the other probabilities in
P , such that after the collision the new set of probabilities P P ′ becomes:

P ′ = {px + ε, px+1 −
ε

n− 1
, . . . , px+n−1 −

ε

n− 1
}

ε : < 7→ [0,M]

Definition 1.5 is the converse of Definition 2.1, however the former refers
to collisions and the latter refers to course-corrections. The advantage of
contextually splitting collisions from seed events is that an overall movement
tendency can be imposed while still allowing the Great Wanderer to avoid
objects and autonomously perform fine course-corrections.

Lemma 2.1. The Great Wanderer will always preserve the same invariant:

I =
n∑

i=1

pi = const

regardless of what seeding events are requested for any direction di ∈ D.

10

Proof 2.1. Given a finite set of directions D:

D = {d1, d2, . . . , dn}

and a corresponding set of probabilities P (from Definition 1.1):

P = {p1, p2, . . . , pn}

Summing up the probabilities ∀pi ∈ P , we obtain I:

I =
n∑

i=1

pi = const

which is constant due to Definition 1.3.
Suppose that a seeding event is requested along direction d1. Following

Definition 2.1, we know that the resulting adjusted set P will become:

P1 = {p1 + ε, p2 −
ε

n− 1
, . . . , pn −

ε

n− 1
}

ε : < 7→ [0, px]

Now, by summing up the elements of the resulting set P1, we obtain I I1
after the collision:

I1 =
n∑

i=1

pi =

= p1 + ε+ p2 −
ε

n− 1
+ p3 −

ε

n− 1
+ . . .+ pn −

ε

n− 1

= p1 + p2 + p3 + . . .+ pn + ε− (n− 1)
ε

n− 1
= p1 + p2 + p3 + . . .+ pn

which is equal to I before the seeding event was requested. The same cal-
culations apply by using Definition 1.5 for all directions in di ∈ D. The
invariants I1, I2, . . ., In are obtained such that:

I1 ≡ I2 ≡ . . . ≡ In =
n∑

i=1

pi = const

which shows that Lemma 2.1 holds regardless on what direction a collision
occurs.

11

It can be shown symmetrically to Proof 1.1 that after a seeding event,
the probabilities still add up to a constant value and that the invariant from
Lemma 2.1 will hold. For seeding events along a certain direction di ∈ P to
influence the movement, we must show that after applying ε to di the Great
Wanderer will indeed follow the direction di.

Lemma 2.2. After successively applying a seeding factor ε to a certain prob-
ability px in the list of probabilities P , the Great Wanderer will select the
direction dx corresponding to the probability px as the next direction to travel
in.

In order to prove Lemma 2.2, we follow the same procedure for colli-
sions from Proof 1.1 and show that by adding ε to px, eventually the Great
Wanderer will choose dx as the next traveling direction, which is shown in
Proof 2.2.

Proof 2.2. Let there be a set of directions D:

D = {dx, d2, . . . , dn}

and a corresponding set of probabilities P (from Definition 1.1):

P = {px, p2, . . . , pn}

The Great Wanderer should follow the direction dx ∈ D that corresponds
to the probability px ∈ P . From Definition 2.1, we know that after one
addition of a factor ε to a probability px, the new set of probabilities P P ′

will have the form:

P ′ = {px + ε, px+1 −
ε

n− 1
, . . . , pn −

ε

n− 1
}

ε : < 7→ [0,M]

Following Definition 2.1, after adding ε, m times to the probability px, we
have a new probability set P Pm:

Pm = {px +mε, px+1 −m
ε

n− 1
, . . . , px+n −m

ε

n− 1
}

ε : < 7→ [0,M]

12

We have to show that eventually the Great Wanderer will follow the di-
rection corresponding to the first element of Pm. Thus, we apply m 7→ ∞ to
Pm and obtain the new set of probabilities Pm P∞:

P∞ = { lim
m7→∞

(px +mε), lim
m 7→∞

(px+1 −m
ε

n− 1
), . . . ,

lim
m 7→∞

(px+n−1 −m
ε

n− 1
)} =

{ lim
m7→∞

(px +mε), 0, . . . , 0}

However, from Definition 1.2 we know that the upper bound for all elements
of P must be M , such that we can reduce P∞ to:

P∞ = {M, 0, .., 0}

which means that the selector function σ from Definition 1.4 can only select
px = M , all other probabilities being zero. Thus the travel direction dx cor-
responding to the probability px will be selected via Definition 1.1, which is
what we had to prove.

In order to get from a point in space A(x2, y2, z2) to a point B(x1, y1, z1)
one would need to reach the final conditions x2 = x1, y2 = y1 and z2 = z1.
Assuming that travel on a direct path between point A and point B is not
possible, for example if the path is obstructed with obstacles, the probability
to select a favorable direction towards point B can be performed by seeding
the set of probabilities P (Definition 2.1). Although the article focuses on the
engines rather than orientation or pathfinding, a sketch of a possible seeding
algorithm is provided in Figure 6.

Symmetric to collisions, given Definition 2.1, the correction value ε could
have some encoded meaning, built dynamically depending on the type of
sensors that the rover is equipped with or the environment that the Great
Wanderer is meant to explore.

The Great Wanderer does not directly offer a method of orientation. In-
stead the constant-memory engine that can be used with more elaborate
pathfinding algorithms. The purpose of the experiments illustrated in Fig-
ures 8 and 9 is to show the rover’s ability to adapt to the surroundings,
rather than reach a given destination. The advantage of the probabilistic
pathfinding compared to feedback or expert-based systems where a rover
makes decisions based on a set of human-assisted inputs, is that the Great

13

let destination := B(x1, y1, z1)
let D := [up, back, down, left, right]
while x1 6= x2 and y1 6= y2 and z1 6= z2
let x2 := current(x) and y2 := current(y) and z2 := current(z)
if x1 > x2 seed(left)
if x1 < x2 seed(right)
if y1 > y2 seed(down)
if y1 < y2 seed(up)
if z1 > z2 seed(back)
if z1 < z2 seed(front)

Figure 6: A generic algorithm for implementing a conditioned probabilistic move-
ment of the Great Wanderer. When executed, all cases are fall-through such that
multiple corrections can be applied one-shot.

Wanderer grants some autonomy to the rover when dealing with the finer
details of the space to explore. The algorithm from Figure 6 does not bother
about fine-grain course-corrections but rather seeds the list of probabilities
to induce a tendency of movement towards the destination. The result is
that the rover does move towards the destination but may choose its own
trajectory in order to avoid obstacles.

3 Extending the Great Wanderer
It is observable that the example given in Figure 1 is generalizable and that
the Great Wanderer is not restricted to only up, down, left, right, front
and back states. It is possible to generalize the Great Wanderer to any
number of directions on a spherical surface by extending the automata with
states for as many angles of a sphere as necessary. This makes the Great
Wanderer illustrated in Figure 1 a particular case of a generalized Great
Wanderer with six possible senses of movement.

Lemma 3.1. The Great Wanderer can be extended to any number of di-
rections such that it will preserve the same invariant I for any collision or
seeding event.

14

Proof 3.1. In Proof 1.1, we conclude that:

I1 ≡ I2 ≡ . . . ≡ In =
n∑

i=1

pi = const

In order to show that the Great Wanderer can be extended to include any
number of directions, we have to show that by extending the list of directions
D and, implicitly via Definition 1.1, the list of probabilities P such that
n n+ 1 does not violate the invariant after a collision or a seeding event.

Given a finite set of directions D:

D = {d1, d2, . . . , dn}

and a corresponding set of probabilities P (from Definition 1.1):

P = {p1, p2, . . . , pn}

From Definition 1.3 we know that:

I =
n∑

i=1

pi = const

We thus extend the sets D, respectively P by applying n n + 1 such
that we obtain the new set of directions D D′:

D′ = {d1, d2, . . . , dn, dn+1}

and a corresponding set of probabilities P P ′ (Definition 1.1):

P ′ = {p1, p2, . . . , pn, pn+1}

Summing up the probabilities in the extended set P ′, we obtain I ′:

I ′ =
n+1∑
i=1

pi = const

which via Definition 1.3 is constant, and has to be maintained for collision
and seeding events.

Expanding the sum, we obtain:

I ′ =
n+1∑
i=1

pi = p1 + p2 + . . .+ pn + pn+1

15

and obeserve that p1 + p2 + . . . + pn =
∑n

i=1 pi is equal to I. Rewriting the
equation, we have:

I ′ = I + pn+1

Previously we have shown in Proof 1.1 and Proof 2.1 that the invariant
I is maintained for both collisions and seeding events. We now have to show
that the transformed invariant I ′ of the extended Great Wanderer is main-
tained for both collision and seeding events.

After a collision along direction d1, via Definition 1.5, we have I ′ I ′1:

I ′1 =
n+1∑
i=1

pi =

= p1 − ε+ p2 +
ε

n
+ p3 +

ε

n
+ . . .+ pn +

ε

n
+ pn+1 +

ε

n

= p1 + p2 + p3 + . . .+ pn − ε+ n
ε

n
+ pn+1

= p1 + p2 + p3 + . . .+ pn + pn+1

= I + pn+1

The same procedure can be applied ∀di ∈ D obtaining the invariants:

I ′1 ≡ I ′2 ≡ . . . ≡ I ′n+1 ≡ I ′ = I + pn+1

which allows us to conclude that the invariant is preserved for collisions when
the Great Wanderer is extended.

Symmetrically, for a seeding event along direction d1, via Definition 2.1,
we have the new transformed invariant I ′ 7→ I1:

I ′1 =
n+1∑
i=1

pi =

= p1 + ε+ p2 −
ε

n
+ p3 −

ε

n
+ . . .+ pn −

ε

n
+ pn+1 −

ε

n

= p1 + p2 + p3 + . . .+ pn + ε− n ε
n
+ pn+1

= p1 + p2 + p3 + . . .+ pn + pn+1

= I + pn+1

The same procedure applies for seeding events ∀di ∈ D obtaining the same
constant I ′ such that:

I ′1 ≡ I ′2 ≡ . . . ≡ I ′n+1 ≡ I ′ = I + pn+1

16

This proves that when the Great Wanderer is extended with new directions,
both collisions and seeding events will preserve the invariant I ′, which is what
we had to prove.

4 Experimental Results
A possible practical application is to use the Great Wanderer to trace en-
closures. Cartography (Reichenbacher, 2003) is an application for the Great
Wanderer that demonstrates its usefulness because the space to explore is
unknown. When there is no previous knowledge of the space to explore, it is
difficult to calculate the resource requirements of a rover. In Second Life, we
have taken a 4.5m × 4.5m × 4.5m enclosure, filled with an ε-shaped object
and placed the Great Wanderer inside (Figure 7). The shape of the Great
Wanderer was selected as a cube with dimensions 0.5m× 0.5m× 0.5m such
that each face corresponds to a state and the related direction.

The coordinate of every collision was stored in order to render Figure 8.
Every plotted point point represents a coordinate of a collision between Great
Wanderer and the enclosure or the ε-shaped obstacle inside the enclosure.

The extremities of the collision points represent the edges of the enclosure.
The corners of the enclosure (Figure 8) are more pronounced because the
Great Wanderer has fewer escape routes available in case the number of
escape directions are smaller than the total number of directions possible.
Otherwise, the Great Wanderer will collide with a surface again (Yoshida,
Maruki, & Yano, 2002).

Figure 9 illustrates a trace (dashed line) along the clusters of collision
points in order to highlight the contour of the ε-shaped obstacle. The error
for both Figure 8 and Figure 9 is ξ = 2.5e−1 due to the fact that collisions
are registered from the centre of the Great Wanderer. The VW that hosted
the Great Wanderer prototype allows objects to have a minimal dimension
of .01m on all axes such that the errors could be reduced to ξmin = 5e−3 or
even eliminated if the error is subtracted from the direction of collision.

5 Discussion
The Great Wanderer presents a rover that is able to adapt to its environment
without intervention and without using increasing storage in order to track

17

Figure 7: This screenshot shows the Great Wanderer placed within an enclosure
containing an ε-shaped obstacle. The Great Wanderer’s faces are colored corre-
sponding to the color of the positive axes of the VW. The overhead text displays
the current traveling velocity of the Great Wanderer, the list of directions qD, the
list of probabilities QT and the selected direction of travel.

previously visited locations. The design contrasts well with other robots that
require storage that is inevitably proportional to the space to explore (Bender
& Slonim, 1994). As shown in the Background 1 section, the Great Wanderer
could be extended to include any other axes of movement. The prototype

18

Figure 8: Plotting unique collisions between the Great Wanderer and the envi-
ronment gives us an overview of the enclosure’s interior. Clusters points indicate
Great Wanderer’s successive attempts to maneouver around difficult objects where
more than one escape direction is blocked. It is perhaps interesting to observe that
the collisions are uniformly distributed although the enclosure only provided two
0.5m apertures that allowed the Great Wanderer to pass from one side to the other.

presented in this paper uses six senses, corresponding to three axes but it
is possible to extend the movement to any number of axes. In case the
Great Wanderer were to be extended to include other axes its shape would
be altered as well. Following the symmetry, by gradually adding faces, the
shape of the Great Wanderer will converge to a sphere.

Paths are chosen based on what previous collisions occurred, out of a
fixed-list of probabilities that is conditioned by the obstacles that the Great
Wanderer encounters. Related research consists in establishing a map such
that the rover is aware of the environment (Zender, Mart́ınez Mozos, Jensfelt,
Kruijff, & Burgard, 2008). For the Great Wanderer, that information is to be
found implicitly in the probability map and is an expression of experience-
driven pathfinding (Murillo, Košecká, Guerrero, & Sagüés, 2008). Compared

19

Figure 9: By projecting all the collected coordinates of collisions in the ŷOz plane
the ε-shaped obstacle can be observed due to the clustering of points (marked with
green). On the left side of the figure we observe the two apertures, approximately
0.5m×0.5m, corresponding to the shape of the ε-shaped obstacle in Firgure 7 that
allowed the Great Wanderer to pass from one half of the enclosure to the other.

to a hardcoded or a transmitted path, the Great Wanderer is able to prob-
abilistically determine its own direction based on what choice is best for a
given environment.

For the scope of the experiment, coordinates were sent via HTTP request
to a web-server and collected in a database. Only a single Great Wanderer
was used to map the interior of the enclosing cube, however it is feasible to use
multiple Great Wanderers to collaboratively map an enclosure (Yamauchi,
1998; Grabowski, Navarro-Serment, Paredis, & Khosla, 2000). Under the as-
sumption that collisions between Great Wanderers are made distinguishable,
then each data-set from each Great Wanderer would represent an addition

20

and refinement of the previously collected data. The concept is similar to
techniques in distributed data gathering using exploration rovers (Ren &
Sorensen, 2008).

6 Conclusions
Virtual Worlds have the ability to offer the immediate next step to theoretical
approaches on robotics and engineering. The Great Wanderer is a physical
object that is governed by the laws of motion and dynamics that the physics
engine implements. The Havok engine is, to the date of this article, one of
the more advanced graphics engine that is known for its advanced real-time
collision and dynamics of rigid bodies. Later, the prototype was moved to
OpenSimulator and ran on both the Open Dynamics Engine (Drumwright,
Hsu, Koenig, & Shell, 2010) and the Bullet engine (Real-Time Physics Simu-
lation, n.d.). The outcome of the experiment did not differ between engines
although some workarounds had to be applied due to OpenSimulator’s par-
tial support of ODE and Bullet physics. Propulsion is achieved by applying
a velocity vector using LSL scripting. It should be mentioned that the pro-
totype is a physical object and that the coding does not conveniently switch
between physical and non-physical movement.

The first Great Wanderer was built an year to the date of this paper and
is still exploring the enclosed space that was built for the experiments on
the University of New Orleans virtual campus. The source-code is publicly
available (Wizardry and Steamworks, 2011) and licensed under the GNU
GPLv3 (Foundation, 2007) to the Wizardry and Steamworks group.

7 Acknowledgments
The authors would like to thank Stephen L. Gasior, University of New Or-
leans, of the Biological Interactive Objects for Science Education (BIO-SE)
group for the continuous support, advice and for supplying the necessary the
land on which we built the initial Great Wanderer prototype. The authors
would like to thank both Stephen L. Gasior and Lazaros Papadopoulos for
their helpful comments and suggestions to this paper.

21

References
Bar-Shalom, Y., Li, X., & Kirubarajan, T. (2004). Estimation with appli-

cations to tracking and navigation: Theory algorithms and software.
Wiley.

Bender, M., & Slonim, D. (1994, nov). The power of team exploration: two
robots can learn unlabeled directed graphs. In Foundations of computer
science, 1994 proceedings., 35th annual symposium on (p. 75 -85). doi:
10.1109/SFCS.1994.365703

Drumwright, E., Hsu, J., Koenig, N., & Shell, D. (2010). Extending
open dynamics engine for robotics simulation. In Proceedings of the
second international conference on simulation, modeling, and pro-
gramming for autonomous robots (pp. 38–50). Berlin, Heidelberg:
Springer-Verlag. Retrieved from http://dl.acm.org/citation.cfm
?id=1947545.1947554

Eschenbrenner, B., Nah, F. F.-H., & Siau, K. (2008). 3-d virtual worlds in ed-
ucation: Applications, benefits, issues, and opportunities. J. Database
Manag., 19 (4), 91-110. Retrieved from http://dblp.uni-trier.de/
db/journals/jdm/jdm19.html#EschenbrennerNS08

Foley, M., & Hoare, C. A. R. (1971). Proof of a recursive program: Quicksort.
Comput. J., 14 (4), 391-395. Retrieved from http://dblp.uni-trier
.de/db/journals/cj/cj14.html#FoleyH71

Foundation, T. F. S. (2007, June). Gnu general public license, version 3.
http://www.gnu.org/licenses/gpl.html. (Last retrieved 2012-05-
10)

Grabowski, R., Navarro-Serment, L., Paredis, C., & Khosla, P. (2000). Het-
erogeneous teams of modular robots for mapping and exploration. Au-
tonomous Robots , 8 , 293-308. Retrieved from http://dx.doi.org/
10.1023/A%3A1008933826411 doi: 10.1023/A:1008933826411

Harmon, P., & King, D. (1985). Expert systems. New York, NY, USA: John
Wiley & Sons, Inc.

Hopcroft, J., Motwani, R., & Ullman, J. (1979). Introduction to automata
theory, languages, and computation (Vol. 2). Addison-wesley Reading,
MA.

Kanode, C., & Haddad, H. (2009, april). Software engineering challenges
in game development. In Information technology: New generations,
2009. itng ’09. sixth international conference on (p. 260 -265). doi:
10.1109/ITNG.2009.74

22

L., P., & E., C. (2012, April). Simulating cardiac electrical activity in open-
metaverses. In Proceedings of the 1st medical education informatics
conference, thessaloniki, greece.

Linden Lab. (2007). Second life website. http://www.secondlife.com.
Magori, V., & Walker, H. (1987). Ultrasonic presence sensors with wide range

and high local resolution. IEEE Trans Ultrason Ferroelectr Freq Con-
trol , 34 (2), 202-11. Retrieved from http://www.biomedsearch.com/
nih/Ultrasonic-presence-sensors-with-wide/18290110.html

Máрков, A. A. (1906). Распространение закон больших чисел
на величину, зависящие друг от друга. Известия Физико-
математического общества при Казанском университете, 15 ,
135—156.

Murillo, A. C., Košecká, J., Guerrero, J. J., & Sagüés, C. (2008, June). Visual
door detection integrating appearance and shape cues. Robot. Auton.
Syst., 56 (6), 512–521. Retrieved from http://dx.doi.org/10.1016/
j.robot.2008.03.003 doi: 10.1016/j.robot.2008.03.003

Olivera, A., & Viera, O. (2007). Adaptive memory programming for the
vehicle routing problem with multiple trips. Computers and OR, 34 (1),
28-47. doi: http://dx.doi.org/10.1016/j.cor.2005.02.044

Real-Time Physics Simulation. (n.d.). Bullet physics library. http://
bulletphysics.org.

Reichenbacher, T. (2003). Abstract adaptive methods for mobile cartog-
raphy. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.106.4698

Ren, W., & Sorensen, N. (2008, April). Distributed coordination architecture
for multi-robot formation control. Robot. Auton. Syst., 56 (4), 324–333.
Retrieved from http://dx.doi.org/10.1016/j.robot.2007.08.005
doi: 10.1016/j.robot.2007.08.005

Saul, L. K., & Jordan, M. I. (1999). Mixed memory markov models: De-
composing complex stochastic processes as mixtures of simpler ones.
Machine Learning , 37 , 75-87. Retrieved from http://dx.doi.org/
10.1023/A%3A1007649326333 doi: 10.1023/A:1007649326333

Simmons, R., & Koenig, S. (1995, July). Probabilistic robot navigation in
partially observable environments. In Proceedings of the international
joint conference on artificial intelligence (ijcai ’95) (p. 1080 - 1087).

Virtual Islands for Better Education. (2011). Organization website. http://
wiki.bio-se.info.

Wizardry and Steamworks. (2011). Great wanderer project. http://was.fm/

23

secondlife:great_wanderer.
Yamauchi, B. (1998). Frontier-based exploration using multiple robots.

In Proceedings of the second international conference on autonomous
agents (pp. 47–53). New York, NY, USA: ACM. Retrieved from
http://doi.acm.org/10.1145/280765.280773 doi: 10.1145/280765
.280773

Yoshida, K., Maruki, T., & Yano, H. (2002, October). A novel strategy for
asteroid exploration with a surface robot. In The second world space
congress. 34th COSPAR Scientific Assembly.

Zender, H., Mart́ınez Mozos, O., Jensfelt, P., Kruijff, G. J. M., & Burgard,
W. (2008, June). Conceptual spatial representations for indoor mobile
robots. Robot. Auton. Syst., 56 (6), 493–502. Retrieved from http://dx
.doi.org/10.1016/j.robot.2008.03.007 doi: 10.1016/j.robot.2008
.03.007

Zheng, Y., & Hemami, H. (1985). Mathematical modeling of a robot collision
with its environment. Journal of Robotic Systems , 2 , 289-307.

24

A Appendix

l i s t dualQuicksort (l i s t a , l i s t b) {

i f (l lGetL i s tLength (a) <= 1) return a+b ;

l i s t pivot_a =
l l L i s t 2 L i s t (a , l lGetL i s tLength (a) /2 , l lGetL i s tLength (a) /2) ;

l i s t pivot_b =
l l L i s t 2 L i s t (b , l lGetL i s tLength (b) /2 , l lGetL i s tLength (b) /2) ;

a =
l lDe l e t eSubL i s t (a , l lGetL i s tLength (a) /2 , l lGetL i s tLength (a) /2) ;

b =
l lDe l e t eSubL i s t (b , l lGetL i s tLength (b) /2 , l lGetL i s tLength (b) /2) ;

l i s t l e s s = [] ;
l i s t less_b = [] ;
l i s t more = [] ;
l i s t more_b = [] ;

i n t e g e r i ;
f o r (i=0 ; i<l lGe tL i s tLeng th (a) ∗2; i++) {

i f (str ingComparer (l l L i s t 2 L i s t (a , i , i) , pivot_a) == TRUE)
{

l e s s += l l L i s t 2 L i s t (a , i , i) ;
less_b += l l L i s t 2 L i s t (b , i , i) ;

}
e l s e
{

more += l l L i s t 2 L i s t (a , i , i) ;
more_b += l l L i s t 2 L i s t (b , i , i) ;

}
}
return dualQuicksort (l e s s , less_b) +

(l i s t) pivot_a + (l i s t) pivot_b +
dualQuicksort (more , more_b) ;

}

Figure 10: The dual-Quicksort implementation in the Linden Scripting Language
(LSL) sorts the list of directions relative to their probabilities.

25

// Now, compute next hop based on the h i ghe s t p r obab i l i t y in the l i s t
// and switch to f i r s t s ta te , f ront , back , l e f t , r i ght , up or down .

l i s t P = dualQuicksort (QT, qD) ;
l i s t d i r s = l l L i s t 2 L i s t S t r i d e d (l lDe l e t eSubL i s t (P, 0 , 0) , 0 ,

l lGetL i s tLength (P)−1, 2) ;
l i s t dirs_prob = l l L i s t 2 L i s t S t r i d e d (P, 0 , l lGetL i s tLength (P)−1, 2) ;
f loat rnd = l lFrand (1) ;
f loat cumulat ive = 0 ;
i n t e g e r i=l lGetL i s tLength (d i r s)−1 ;
do {

cumulat ive += l l L i s t 2 F l o a t (dirs_prob , i) ;
i f (cumulat ive >= rnd) {

i f (l l L i s t 2 S t r i n g (d i r s , i) == " f r on t ") s t a t e f r on t ;
i f (l l L i s t 2 S t r i n g (d i r s , i) == "back") s t a t e back ;
i f (l l L i s t 2 S t r i n g (d i r s , i) == " l e f t ") s t a t e l e f t ;
i f (l l L i s t 2 S t r i n g (d i r s , i) == " r i gh t ") s t a t e r i g h t ;
i f (l l L i s t 2 S t r i n g (d i r s , i) == "up") s t a t e up ;
i f (l l L i s t 2 S t r i n g (d i r s , i) == "down") s t a t e down ;

}
} whi l e(−−i >=0) ;

Figure 11: The cumulative probability algorithm uses the dual-Quicksort algo-
rithm found in Appendix 10 in order to first sort the map in decreasing order and
then determines the next direction of travel and commutes to its respective state.

26

