Table of Contents

Magic Square Generation

A magic square is an arrangement of numbers in a square grid, where the numbers in each row, column, and the numbers on the big diagonals, all add up to the same number. We can determine that number. Suppose $M$ is the number that each row, column or big diagonal must add up to. Since there are $n$ rows, the sum of all the numbers in the magic square must be $n*M$. Now, the numbers being added give the series $1,2,3,..,n^{2}$, thus:

$$
\sum_{i=1}^{n^{2}}{i}=n*M
$$

Knowing that:

$$
1+2+3+...+n^{2}=\frac{n^2(n^2+1)}{2}
$$

then it follows that:

$$
n*M=\frac{n^{2}(n^{2}+1)}{2}
$$

reducing, we obtain:

$$
M=\frac{n(n^{2}+1)}{2}
$$

Thus, for a $3 \times 3$ magic square, M=$15$, for a $4 \times 4$ magic square $M=34$, for a $5 \times 5$ magic square $M=65$, etc…

de la Loubère's Algorithm

  1. Start in the middle column and place the number $x=1$.
  2. Go up and right and place $x+1$.
    1. If you exceed the square bounds, wrap around and place $x+1$.
    2. If you meet an occupied square, move down and place $x+1$.
  3. Repeat at 1 until all numbers are placed.

Generalizing Loubère Algorithm

The same concept applies, for all $90^\circ$ counter-clockwise rotations of the movement direction, going back each time a square is occupied.

Every movement sequence will yield a magic square, all the columns, lines and big diagonals adding up to $15$. The squares generated by all four sequences are:

$$
\begin{align}
MS_{1} = 
\begin{pmatrix} 
8 & 1 & 6 \\
3 & 5 & 7 \\
4 & 9 & 2 \\
\end{pmatrix}
&
MS_{2} = 
\begin{pmatrix} 
6 & 7 & 2 \\
1 & 5 & 9 \\
8 & 3 & 4 \\
\end{pmatrix}
&
MS_{3} = 
\begin{pmatrix} 
2 & 9 & 4 \\
7 & 5 & 3 \\
6 & 1 & 8 \\
\end{pmatrix}
&
MS_{4} = 
\begin{pmatrix} 
4 & 3 & 8 \\
9 & 5 & 1 \\
2 & 7 & 6 \\
\end{pmatrix}
\end{align}
$$

The same applies to any odd square (with a central tile), although not all movements will necessarily build a magic square.

In this case, two of the paths do not generate magic squares. All the rest though do generate magic squares. The results in a $5 \times 5$ case are the following squares:

$$
\begin{align}
\color{green} {
MS_{1} = 
\begin{pmatrix} 
17 & 24 & 1 & 8 & 15 \\
23 & 5 & 7 & 14 & 16 \\
4 & 6 & 13 & 20 & 22 \\
10 & 12 & 19 & 21 & 3 \\
11 & 18 & 25 & 2 & 9 
\end{pmatrix}
}
&
\color{green} {
MS_{2} = 
\begin{pmatrix} 
11 & 18 & 25 & 2 & 9 \\
17 & 24 & 1 & 8 & 15 \\
23 & 5 & 7 & 14 & 16 \\
4 & 6 & 13 & 20 & 22 \\
10 & 12 & 19 & 21 & 3 
\end{pmatrix}
}
&
\color{green} {
MS_{3} = 
\begin{pmatrix} 
15 & 9 & 3 & 22 & 16 \\
8 & 2 & 21 & 20 & 14 \\
1 & 25 & 19 & 13 & 7 \\
24 & 18 & 12 & 6 & 5 \\
17 & 11 & 10 & 4 & 23 
\end{pmatrix}
}
\end{align}
$$

$$
\begin{align}
\color{green} {
MS_{4} = 
\begin{pmatrix} 
16 & 15 & 9 & 3 & 22 \\
14 & 8 & 2 & 21 & 20 \\
7 & 1 & 25 & 19 & 13 \\
5 & 24 & 18 & 12 & 6 \\
23 & 17 & 11 & 10 & 4 
\end{pmatrix}
}
&
\color{green} {
MS_{5} = 
\begin{pmatrix} 
9 & 2 & 25 & 18 & 11 \\
3 & 21 & 19 & 12 & 10 \\
22 & 20 & 13 & 6 & 4 \\
16 & 14 & 7 & 5 & 23 \\
15 & 8 & 1 & 24 & 17 
\end{pmatrix}
}
&
\color{red} {
MS_{6} = 
\begin{pmatrix} 
3 & 21 & 19 & 12 & 10 \\
22 & 20 & 13 & 6 & 4 \\
16 & 14 & 7 & 5 & 23 \\
15 & 18 & 1 & 24 & 17 \\
9 & 2 & 25 & 18 & 11 
\end{pmatrix}
}
\end{align}
$$

$$
\begin{align}
\color{green} {
MS_{7} = 
\begin{pmatrix} 
11 & 10 & 4 & 23 & 17 \\
18 & 12 & 6 & 5 & 24 \\
25 & 19 & 13 & 7 & 1 \\
2 & 21 & 20 & 14 & 8 \\
9 & 3 & 22 & 16 & 15 
\end{pmatrix}
}
&
\color{red} {
MS_{8} = 
\begin{pmatrix} 
10 & 4 & 23 & 17 & 11 \\
12 & 6 & 5 & 24 & 18 \\
19 & 13 & 7 & 1 & 25 \\
21 & 20 & 14 & 8 & 2 \\
3 & 22 & 16 & 15 & 9 
\end{pmatrix}
}
\end{align}
$$

where the green squares are magic squares all the lines, columns and big diagonals adding up to $65$ while the red squares are not magic squares.