Table of Contents

Equation of a Line

Standard

\begin{eqnarray*}
Ax + By + C &=& 0
\end{eqnarray*}

where:

Given two points $P_{1}$ and $P_{2}$ on the line, we can write that:

\begin{eqnarray*}
A &=& y_{1}-y_{2} \\
B &=& x_{2}-x_{1} \\
C &=& x_{1}y_{2}-x_{2}y_{1}
\end{eqnarray*}

in order to determine $A$, $B$ and $C$.

Slope-Intercept


\begin{tikzpicture}

  % grid
  \draw[help lines] (-2,-2) grid (2,2);
  
  % origin
  \draw[red, line width=.1mm] (-0.1,-0.1) -- (0.1,0.1)
    (0.1,-0.1) -- (-0.1,0.1);
  \coordinate[label={[red]above left:$O$}] (O) at (0,0);
  
  \coordinate[label={[red]above left:$A$}] (A) at (-2,0);
  \drawpoint{A}{.5mm}{black}
  \coordinate[label={[red]above left:$B$}] (B) at (2,1);
  \drawpoint{B}{.5mm}{black}
  
  \draw (A) -- (B);
  
  \coordinate (C) at (2,0);
  \coordinate (D) at (0,1);
  
  \draw[dotted,->] (O) --  (C) node[below] {$x$};
  \draw[dotted,->] (O) --  (D) node[left] {$y$};
  
  \markangle{A}{B}{C}{3mm}{3mm}{$\alpha$}{cyan}{north}
  
\end{tikzpicture}

\begin{eqnarray*}
y &=& {\color{cyan}m}x + b & \\
\end{eqnarray*}

where ${\color{cyan}m}$ is the slope:

\begin{eqnarray*}
{\color{cyan}m} &=& \tan{{\color{blue}\alpha}}
\end{eqnarray*}

where ${\color{blue}\alpha}$ is the angle between the line and the $\overline{Oy}$ axis.

${\color{cyan}m}$ can also be expressed parametrically as:

\begin{eqnarray*}
{\color{cyan}m} &=& \frac{y_{2}-y_{1}}{x_{2}-x_{1}}
\end{eqnarray*}

where $x_{1}, x_{2}, y_{1}, y_{2}$ are the components of the points $A(x_{1}, y_{1})$ and $B(x_{2}, y_{2})$ of the line.

Point-Slope

Given two points $A(x_{1}, y_{1})$ and $B(x_{2}, y_{2})$ and a connecting line $\overline{AB}$, the point-intercept form of the line is given by:

\begin{eqnarray*}
y - y_{1} &=& m(x - x_{1})
\end{eqnarray*}

where $m$ is the slope of the line.

Parametric Form

In parametric form:

\begin{eqnarray*}
P &=& P_{0} + t(P_{1} - P_{0})
\end{eqnarray*}

where:

Midpoint of a Segment


\begin{tikzpicture}

  % grid
  \draw[help lines] (-2,-2) grid (2,2);
  
  % origin
  \draw[black, line width=.1mm] (-0.1,-0.1) -- (0.1,0.1)
    (0.1,-0.1) -- (-0.1,0.1);
  \coordinate[label={[black]below left:$O$}] (O) at (0,0);
  
  \coordinate[label={[green]above left:$A(x_{1}, y_{1}, z_{1})$}] (A) at (-2,0);
  \drawpoint{A}{.5mm}{black}
  \coordinate[label={[blue]above left:$B(x_{2}, y_{2}, z_{2})$}] (B) at (2,1);
  \drawpoint{B}{.5mm}{black}
  
  \draw (A) -- (B);
  
  \coordinate[label={[red]above left:$M$}] (M) at (0,0.5);
  \drawpoint{M}{.5mm}{red}
  
  \coordinate (C) at (2,0);
  \coordinate (D) at (0,2);

  \draw[dotted,->] (O) --  (C) node[below] {$x$};
  \draw[dotted,->] (O) --  (D) node[left] {$y$};
  
  %\markangle{A}{B}{C}{3mm}{3mm}{$\alpha$}{cyan}{north}
  
\end{tikzpicture}

Knowing the components of two points $A$ and $B$, we can determine the midpoint $\color{red} M$ of the segment $\overline{AB}$ whose components are:

\begin{eqnarray*}
\color{red} x_{M} &=& \frac{{\color{green}x_{1}}+{\color{blue}x_{2}}}{2} \\
\color{red} y_{M} &=& \frac{{\color{green}y_{1}}+{\color{blue}y_{2}}}{2} \\
\color{red} z_{M} &=& \frac{{\color{green}z_{1}}+{\color{blue}z_{2}}}{2} \\
\end{eqnarray*}