Table of Contents

Equation of an Elipse


\begin{tikzpicture}

  % grid
  \draw[help lines] (-2,-2) grid (2,2);
  
  % origin
  \draw[red, line width=.1mm] (-0.1,-0.1) -- (0.1,0.1)
    (0.1,-0.1) -- (-0.1,0.1);
  \coordinate[label={[red]above left:$O$}] (O) at (0,0);
  
  \draw (0,0) ellipse (20mm and 10mm);
  \coordinate[label={[red]above left:$B$}] (B) at (0,1);
  \drawpoint{B}{.5mm}{black}
  \coordinate[label={[red]above right:$A$}] (A) at (2,0);
  \drawpoint{A}{.5mm}{black}
  
  \draw[black,dotted] (O) -- (A);
  \draw[black,dotted] (O) -- (B);
  
  \drawbrace{O}{A}{2mm}{blue}{$a$}{0}{-4mm}{mirror};
  \drawbrace{O}{B}{2mm}{green}{$b$}{4mm}{0}{mirror};
  
\end{tikzpicture}

In standard form:

\begin{eqnarray*}
(\frac{x}{{\color{blue}a}})^{2}+(\frac{y}{\color{green}b})^{2} &=& 1
\end{eqnarray*}

When $O$ is not the centre of the ellipse, but rather an arbitrary point $C(j, k)$ then:

\begin{eqnarray*}
x &\mapsto& x-j \\
y &\mapsto& x-k \\
\end{eqnarray*}

such that the equation becomes:

\begin{eqnarray*}
(\frac{x-j}{{\color{blue}a}})^{2}+(\frac{y-k}{\color{green}b})^{2} &=& 1
\end{eqnarray*}

Equation of a Rotated Elipse


\begin{tikzpicture}

  % grid
  \draw[help lines] (-2,-2) grid (2,2);
  
  % origin
  \draw[red, line width=.1mm] (-0.1,-0.1) -- (0.1,0.1)
    (0.1,-0.1) -- (-0.1,0.1);
  \coordinate[label={[red]below left:$O$}] (O) at (0,0);
  
  \coordinate (X) at (5,0);
  
  \draw[rotate=60] (0,0) ellipse (20mm and 10mm);
  \coordinate[label={[red]above left:$B$}] (B) at (-.7,.8);
  \drawpoint{B}{.5mm}{black}
  \coordinate[label={[red]above right:$A$}] (A) at (1,1.7);
  \drawpoint{A}{.5mm}{black}
  
  \draw[black,dotted] (O) -- (A);
  \draw[black,dotted] (O) -- (B);
  
  \drawbrace{O}{A}{2mm}{blue}{$a$}{3mm}{-2mm}{mirror};
  \drawbrace{O}{B}{2mm}{green}{$b$}{3mm}{3mm}{mirror};
  
  % alpha 
  \markangle{O}{X}{A}{3mm}{3mm}{$\alpha$}{cyan}{north west}
  
\end{tikzpicture}

\begin{eqnarray*}
(\frac{x\cos{{\color{cyan}\alpha}} + y\sin{{\color{cyan}\alpha}}}{{\color{blue}a}})^{2}+(\frac{x\sin{{\color{cyan}\alpha}} - y\cos{{\color{cyan}\alpha}}}{\color{green}b})^{2} &=& 1
\end{eqnarray*}

Foci


\begin{tikzpicture}

  % grid
  \draw[help lines] (-3,-3) grid (3,3);
  
  % origin
  \draw[red, line width=.1mm] (-0.1,-0.1) -- (0.1,0.1)
    (0.1,-0.1) -- (-0.1,0.1);
  \coordinate[label={[red]above left:$O$}] (O) at (0,0);
  
  \draw (0,0) ellipse (30mm and 20mm);
  \coordinate[label={[red]above left:$B$}] (B) at (0,2);
  \drawpoint{B}{.5mm}{black}
  \coordinate[label={[red]above right:$A$}] (A) at (3,0);
  \drawpoint{A}{.5mm}{black}
  
  \coordinate[label={[red]above left:$B'$}] (B') at (0,-2);
  \drawpoint{B'}{.5mm}{black}
  \coordinate[label={[red]above left:$A'$}] (A') at (-3,0);
  \drawpoint{A'}{.5mm}{black}
  
  \draw[black,dotted] (A) -- (O) -- (A');
  \draw[black,dotted] (B) -- (O) -- (B');
  
  \drawbrace{O}{A}{2mm}{blue}{$a$}{0}{-4mm}{mirror};
  \drawbrace{O}{B}{2mm}{green}{$b$}{4mm}{0}{mirror};
  
  \coordinate[label={[cyan]above:$F_{1}$}] (F_{1}) at ({sqrt(5}, 0);
  \drawpoint{F_{1}}{.5mm}{cyan}
  \coordinate[label={[cyan]above:$F_{2}$}] (F_{2}) at (-{sqrt(5}, 0);
  \drawpoint{F_{2}}{.5mm}{cyan}
  
  \coordinate[label={[cyan]above:$P$}] (P) at (-1, {sqrt(32/9)});
  \drawpoint{P}{.5mm}{cyan}
  
  \draw[cyan,dotted] (P) -- (F_{2});
  \draw[cyan,dotted] (P) -- (F_{1});
  
\end{tikzpicture}

\begin{eqnarray*}
{\overline{\color{red}{OF_{1}}} &=& \sqrt{{\color{blue}a}^{2} - {\color{green}b}^{2}} & \\
{\overline{\color{red}{OF_{2}}} &=& -\sqrt{{\color{blue}a}^{2} - {\color{green}b}^{2}}
\end{eqnarray*}

\begin{eqnarray*}
{\overline{\color{cyan}{PF_{2}}} + {\overline{\color{cyan}{PF_{1}}} &=& 2*{\color{blue}a}
\end{eqnarray*}

where ${\color{cyan}P}$ represents an arbitrary point on the ellipse perimeter.

Area and Perimeter


\begin{tikzpicture}

  % grid
  \draw[help lines] (-2,-2) grid (2,2);
  
  % origin
  \draw[red, line width=.1mm] (-0.1,-0.1) -- (0.1,0.1)
    (0.1,-0.1) -- (-0.1,0.1);
  \coordinate[label={[red]above left:$O$}] (O) at (0,0);
  
  \draw (0,0) ellipse (20mm and 10mm);
  \coordinate[label={[red]above left:$B$}] (B) at (0,1);
  \drawpoint{B}{.5mm}{black}
  \coordinate[label={[red]above right:$A$}] (A) at (2,0);
  \drawpoint{A}{.5mm}{black}
  
  \draw[black,dotted] (O) -- (A);
  \draw[black,dotted] (O) -- (B);
  
  \drawbrace{O}{A}{2mm}{blue}{$a$}{0}{-4mm}{mirror};
  \drawbrace{O}{B}{2mm}{blue}{$b$}{4mm}{0}{mirror};
  
  \coordinate[label={[red]above:$F$}] (F) at ({sqrt(2}, 0);
  \drawpoint{F}{.5mm}{red}
  
\end{tikzpicture}

\begin{eqnarray*}
A &=& \pi*a*b & \\
P &=& 4*a*E(e) & \\
e &=& \frac{\overline{OF}}{a}
\end{eqnarray*}

float wasElipseCircumference(float a, float b, integer precision) {
    float x = llListStatistics(LIST_STAT_MAX, [a, b]);
    float y = llListStatistics(LIST_STAT_MIN, [a, b]);
    float tol = llSqrt(llPow(.5, precision));
    if (precision * y < tol * x) return 4 * x;
    float s = 0;
    float m = 1;
    while (x - y > tol * y) {
        x = .5 * (x + y);
        y = llSqrt(x * y);
        m *= 2;
        s += m * llPow(x - y, 2);
    }
    return PI * (llPow(a + b, 2) - s) / (x + y);
}