29th of September 2024
The template is based on the wifipreboot template and implements a captive portal-like environment to configure the initial WiFi network, OTA and then obsoletes the older esp-pin-toggle
and esp-pin-toggle-analog
templates by making the features of both those templates available in one single all-encompassing template.
The template must be configured in order to set the master password at the top and preferably configure MQTT such that when the template connects to the WiFi network it will be able to connect and subscribe to an MQTT broker. In case no MQTT topic is configured by editing the template header, then the template will subscribe to the MQTT broker on the same topic name as the name that will be configured for the device via the WiFi preboot environment. That being said, after configuring, the template can be flashed to an ESP32 or an ESP8266 device and after a reset, the template will start flashing the AP code required to connect to. By connecting to the AP named after the number that corresponds to the blink sequence of the ESP built-in LED, the template can be configured to connect to a WiFi network.
Upon connect and subscribe, the template will send a message to the MQTT topic indicating that the device has just connected and subscribed to the MQTT topic and is ready to process requests. From then on, it is a matter of sending specific JSON payloads to the MQTT topic that the template is listening on in order to make the template either trigger GPIO pins, read digital pins or measure the value of analog pins. Here is a table of actions available, the possible options and an example for each:
Action | Parameter | Possible Value | Description | Example JSON |
---|---|---|---|---|
get | pin | any digital pin number | get the digital level of a GPIO pin indicated by pin | { "action": "get", "pin": 4 } |
set | pin | any digital pin number | set the digital level of a pin depending on the state parameter to either HIGH (on ) or LOW (off ) | { "action": "set", "pin": 4, "state": "on" } |
state | on , off | |||
debounce | pin | any digital pin number | the debounce action can be used to simulate a digital button press for devices and gadgets that require simulating pushing and releasing a button with a certain time interval between the two (ie: long-press); the action allows to specify sleep , the amount of time between the figurative press and release, as well as mode set to either HTL or LTH meaning setting the digital pin level from HIGHT to LOW, respectively LOW to HIGH with HTL being the default | { "pin": "2", "sleep": "2500", "action": "debounce" } |
sleep | an amount of time to sleep between toggling the pin between HIGH or LOW | |||
mode | HTL from HIGH to LOW, or LTH from LOW to HIGH | |||
measure | pin | any analog pin number | get the analog value of the GPIO pin indicated by pin | { "action": "measure", "pin": 0 } |
Upon publishing the payload, the template will respond on the same topic using a matching JSON payload containing the results and the execute
key set to the original JSON payload that was sent by the user for the purpose of linearizing requests and responses.
/////////////////////////////////////////////////////////////////////////// // Copyright (C) Wizardry and Steamworks 2024 - License: GNU MIT // // Please see: http://www.gnu.org/licenses/gpl.html for legal details, // // rights of fair usage, the disclaimer and warranty conditions. // /////////////////////////////////////////////////////////////////////////// // As it is very much needed sometimes to manipulate GPIO pins, and then // // by combining the wifipreboot environment, the following template for // // the Arduino can be used to manipulate GPIO pins on the low level via // // a common MQTT broker that the template is meant to connect to. // // // // The full documentation can be found on: // // * https://grimore.org/arduino/gpio_tool // /////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////// // configurable parameters // /////////////////////////////////////////////////////////////////////////// // comment out to enable debugging #define DEBUG // set the master password for OTA updates and access to the soft AP #define PREBOOT_MASTER_PASSWORD "" // the name and length of the cookie to use for authentication #define PREBOOT_COOKIE_NAME "ArduinoPrebootCookie" #define PREBOOT_COOKIE_MAX_LENGTH 256 // timeout to establish STA connection in milliseconds #define WIFI_RETRY_TIMEOUT 10000 // retries as multiples of WIFI_RETRY_TIMEOUT milliseconds #define WIFI_CONNECT_TRIES 30 // the time between blinking a single digit #define BLINK_DIT_LENGTH 250 // the time between blinking the whole number #define BLINK_DAH_LENGTH 2500 // GPIO application // The MQTT broker to connect to. #define MQTT_HOST "" // The MQTT broker username. #define MQTT_USERNAME "" // The MQTT broker password. #define MQTT_PASSWORD "" // The MQTT broker port. #define MQTT_PORT 1883 // The MQTT topic #define MQTT_TOPIC "" // Maximal size of an MQTT payload #define MQTT_PAYLOAD_MAX_LENGTH 256 /////////////////////////////////////////////////////////////////////////// // includes // /////////////////////////////////////////////////////////////////////////// #include <Arduino.h> #if defined(ARDUINO_ARCH_ESP32) #include <WiFi.h> #include <WebServer.h> #elif defined(ESP8266) #include <ESP8266WiFi.h> #include <ESP8266mDNS.h> #include <ESP8266WebServer.h> #endif #include <FS.h> #include <LittleFS.h> #include <ArduinoJson.h> // Arduino OTA #include <WiFiUdp.h> #include <ArduinoOTA.h> #include <TickTwo.h> // GPIO application #include <PubSubClient.h> // Platform specific defines. #if defined(ARDUINO_ARCH_ESP8266) #define GET_CHIP_ID() (ESP.getChipId()) #elif defined(ARDUINO_ARCH_ESP32) #define GET_CHIP_ID() ((uint16_t)(ESP.getEfuseMac() >> 32)) #endif #define HOSTNAME() String("esp-" + String(GET_CHIP_ID(), HEX)) #define CONFIGURATION_FILE_NAME "/config.json" #define CONFIGURATION_MAX_LENGTH 1024 /////////////////////////////////////////////////////////////////////////// // function definitions // /////////////////////////////////////////////////////////////////////////// byte* getHardwareAddress(void); char* getHardwareAddress(char colon); String computeTemporarySsid(void); void arduinoOtaTickCallback(void); void blinkDigitsDahTickCallback(void); void blinkDigitsDitTickCallback(void); void blinkDigitsBlinkTickCallback(void); void clientWifiTickCallback(void); void serverWifiTickCallback(void); void handleServerWifi(void); void handleClientWifi(void); void setConfiguration(const char* configurationFile, DynamicJsonDocument configuration, int bufferSize); DynamicJsonDocument getConfiguration(const char* configurationFile, int bufferSize); void handleRootHttpRequest(void); void handleSetupHttpRequest(void); void handleRootHttpGet(void); void handleSetupHttpGet(void); void handleRootHttpPost(void); void handleSetupHttpPost(void); void handleHttpNotFound(void); bool fsWriteFile(fs::FS &fs, const char *path, const char *payload); bool fsReadFile(fs::FS &fs, const char *path, char *payload, size_t maxLength); void rebootTickCallback(void); // GPIO application void gpioDebounceTickCallback(void); void mqttTickCallback(void); String getMqttTopic(void); String getMqttId(void); void mqttGpioSet(DynamicJsonDocument doc); DynamicJsonDocument mqttGpioGet(const DynamicJsonDocument doc); void mqttGpioDebounce(DynamicJsonDocument doc); DynamicJsonDocument mqttGpioMeasure(const DynamicJsonDocument doc); constexpr unsigned int mqttGpioActionHash(const char *s, int off = 0); char *mqttSerialize(const JsonDocument doc, size_t maxLength); /////////////////////////////////////////////////////////////////////////// // variable declarations // /////////////////////////////////////////////////////////////////////////// #if defined(ARDUINO_ARCH_ESP8266) ESP8266WebServer server(80); #elif defined(ARDUINO_ARCH_ESP32) WebServer server(80); #endif TickTwo arduinoOtaTick(arduinoOtaTickCallback, 1000); TickTwo rebootTick(rebootTickCallback, 1000); TickTwo clientWifiTick(clientWifiTickCallback, 25); TickTwo serverWifiTick(serverWifiTickCallback, 250); TickTwo blinkDigitsDahTick(blinkDigitsDahTickCallback, BLINK_DAH_LENGTH); TickTwo blinkDigitsDitTick(blinkDigitsDitTickCallback, BLINK_DIT_LENGTH); TickTwo blinkDigitsBlinkTick(blinkDigitsBlinkTickCallback, 25); char* authenticationCookie = NULL; bool otaStarted; bool networkConnected; int connectionTries; bool rebootPending; int temporarySsidLength; int temporarySsidIndex; int* temporarySsidNumbers; int blinkLedState; // GPIO application WiFiClient espClient; PubSubClient mqttClient(espClient); // GPIO application TickTwo gpioDebounceTick(gpioDebounceTickCallback, 25, 1); TickTwo mqttTick(mqttTickCallback, 250); // GPIO application int gpioDebouncePin; int gpioDebounceSleep; String gpioDebounceMode; /////////////////////////////////////////////////////////////////////////// // HTML templates // /////////////////////////////////////////////////////////////////////////// const char* HTML_BOOT_TEMPLATE = R"html( <!DOCTYPE html> <html lang="en"> <head> <title>ESP Setup</title> </head> <body> <h1>ESP Setup</h1> <hr> AP: %AP%<br> MAC: %MAC%<br> <hr> <form method="POST" action="/setup"> <label for="name">Name: </label> <input id="name" type="text" name="name" value="%NAME%"> <br> <label for="Ssid">Ssid: </label> <input id="Ssid" type="text" name="Ssid"> <br> <label for="password">Password: </label> <input id="password" type="password" name="password"> <hr> <input type="submit" value="submit"> </form> </body> </html> )html"; const char* HTML_AUTH_TEMPLATE = R"html( <!DOCTYPE html> <html lang="en"> <head> <title>Preboot Access</title> </head> <body> <h1>Preboot Access</h1> <form method="POST"> <label for="password">Master password: </label> <input id="password" type="password" name="password"> <hr> <input type="submit" value="submit"> </form> </body> </html> )html"; /////////////////////////////////////////////////////////////////////////// // begin Arduino // /////////////////////////////////////////////////////////////////////////// void setup() { #ifdef DEBUG Serial.begin(115200); // wait for serial while (!Serial) { delay(100); } Serial.println(); #endif #if defined(ARDUINO_ARCH_ESP8266) if (!LittleFS.begin()) { #ifdef DEBUG Serial.println("LittleFS mount failed, formatting and rebooting..."); #endif LittleFS.format(); delay(1000); ESP.restart(); #elif defined(ARDUINO_ARCH_ESP32) if (!LittleFS.begin(true)) { #endif Serial.println("LittleFS mount failed..."); return; } #ifdef DEBUG Serial.printf("Checking if WiFi server must be started...\n"); #endif // check if Ssid is set and start soft AP or STA mode DynamicJsonDocument configuration = getConfiguration(CONFIGURATION_FILE_NAME, CONFIGURATION_MAX_LENGTH); if(configuration.isNull() || !configuration.containsKey("Ssid")) { #ifdef DEBUG Serial.printf("No stored STA Ssid found, proceeding to soft AP...\n"); #endif // start soft AP rebootTick.start(); serverWifiTick.start(); return; } #ifdef DEBUG Serial.printf("No stored STA Ssid found, proceeding to soft AP...\n"); #endif clientWifiTick.start(); // setup OTA ArduinoOTA.setHostname(configuration["name"].as<const char*>()); // allow flashing with the master password ArduinoOTA.setPassword(PREBOOT_MASTER_PASSWORD); ArduinoOTA.onStart([]() { String type; if (ArduinoOTA.getCommand() == U_FLASH) { type = "sketch"; } else { // U_FS type = "filesystem"; } // NOTE: if updating FS this would be the place to unmount FS using FS.end() Serial.println("Start updating " + type); }); ArduinoOTA.onEnd([]() { Serial.println("\nEnd"); }); ArduinoOTA.onProgress([](unsigned int progress, unsigned int total) { Serial.printf("Progress: %u%%\r", (progress / (total / 100))); }); ArduinoOTA.onError([](ota_error_t error) { Serial.printf("Error[%u]: ", error); if (error == OTA_AUTH_ERROR) { Serial.println("Auth Failed"); } else if (error == OTA_BEGIN_ERROR) { Serial.println("Begin Failed"); } else if (error == OTA_CONNECT_ERROR) { Serial.println("Connect Failed"); } else if (error == OTA_RECEIVE_ERROR) { Serial.println("Receive Failed"); } else if (error == OTA_END_ERROR) { Serial.println("End Failed"); } }); // start timers / threads arduinoOtaTick.start(); rebootTick.start(); // GPIO application mqttTick.start(); } void loop() { arduinoOtaTick.update(); rebootTick.update(); clientWifiTick.update(); serverWifiTick.update(); blinkDigitsDitTick.update(); blinkDigitsDahTick.update(); blinkDigitsBlinkTick.update(); // GPIO application gpioDebounceTick.update(); mqttTick.update(); } /////////////////////////////////////////////////////////////////////////// // end Arduino // /////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////// // GPIO-MQTT // /////////////////////////////////////////////////////////////////////////// constexpr unsigned int mqttGpioActionHash(const char *s, int off) { return !s[off] ? 5381 : (mqttGpioActionHash(s, off+1)*33) ^ s[off]; } void gpioDebounceTickCallback(void) { gpioDebounceTick.pause(); #ifdef DEBUG Serial.printf("Pin %d debounce.\n", gpioDebouncePin); #endif switch(mqttGpioActionHash(gpioDebounceMode.c_str())) { case mqttGpioActionHash("LTH"): digitalWrite(gpioDebouncePin, HIGH); break; default: digitalWrite(gpioDebouncePin, LOW); break; } } String getMqttTopic(void) { String mqttTopic = String(MQTT_TOPIC); if(mqttTopic == NULL || mqttTopic.length() == 0) { DynamicJsonDocument configuration = getConfiguration(CONFIGURATION_FILE_NAME, CONFIGURATION_MAX_LENGTH); if(configuration.containsKey("name")) { mqttTopic = configuration["name"].as<const char*>(); } } return mqttTopic; } String getMqttId(void) { String mqttId = String(HOSTNAME()); DynamicJsonDocument configuration = getConfiguration(CONFIGURATION_FILE_NAME, CONFIGURATION_MAX_LENGTH); if(configuration.containsKey("name")) { mqttId = configuration["name"].as<const char*>(); } return mqttId; } void mqttGpioSet(DynamicJsonDocument doc) { String state = doc["state"].as<const char *>(); const int pin = doc["pin"].as<const int>(); #ifdef DEBUG Serial.printf("Setting pin %d to state %s...\n", pin, state); #endif pinMode(pin, OUTPUT); if (state == "on") { digitalWrite(pin, HIGH); int pinStatus = digitalRead(pin); #ifdef DEBUG Serial.printf("Pin %d state is now %d.\n", pin, pinStatus); #endif return; } digitalWrite(pin, LOW); int pinStatus = digitalRead(pin); #ifdef DEBUG Serial.printf("Pin %s state is now %d.\n", pinStatus); #endif } void mqttGpioDebounce(DynamicJsonDocument doc) { gpioDebounceSleep = doc["sleep"].as<const int>(); gpioDebouncePin = doc["pin"].as<const int>(); if(doc.containsKey("mode")) { gpioDebounceMode = String(doc["mode"].as<const char*>()); gpioDebounceMode.trim(); gpioDebounceMode.toUpperCase(); } #ifdef DEBUG Serial.printf("Pin %d bounce.\n", gpioDebouncePin); #endif pinMode(gpioDebouncePin, OUTPUT); switch(mqttGpioActionHash(gpioDebounceMode.c_str())) { case mqttGpioActionHash("LTH"): digitalWrite(gpioDebouncePin, LOW); break; default: digitalWrite(gpioDebouncePin, HIGH); break; } #ifdef DEBUG Serial.printf("Debouncing pin %d with sleep %d and mode %s.\n", gpioDebouncePin, gpioDebounceSleep, gpioDebounceMode.c_str()); #endif gpioDebounceTick.interval(gpioDebounceSleep); gpioDebounceTick.resume(); } DynamicJsonDocument mqttGpioGet(const DynamicJsonDocument doc) { const int pin = doc["pin"].as<const int>(); #ifdef DEBUG Serial.printf("Getting pin: %d state.\n", pin); #endif // Set up digital read pins. pinMode(3, FUNCTION_3); int pinStatus = digitalRead(pin); #ifdef DEBUG Serial.printf("Pin %d state is %d.\n", pin, pinStatus); #endif // Announce the action. DynamicJsonDocument msg(MQTT_PAYLOAD_MAX_LENGTH); msg["pin"] = pin; switch (pinStatus) { case 1: msg["state"] = "on"; break; case 0: msg["state"] = "off"; break; default: msg["state"] = "unknown"; break; } return msg; } DynamicJsonDocument mqttGpioMeasure(const DynamicJsonDocument doc) { const int pin = doc["pin"].as<const int>(); #ifdef DEBUG Serial.printf("Getting analog pin %d state...\n", pin); #endif int analogValue = analogRead(pin); #ifdef DEBUG Serial.printf("Value of analog pin %d is %d.\n", pin, analogValue); #endif // Announce the analog value. DynamicJsonDocument msg(MQTT_PAYLOAD_MAX_LENGTH); msg["pin"] = pin; msg["value"] = analogValue; return msg; } char *mqttSerialize(const JsonDocument doc, size_t maxLength) { char* buff = (char*) malloc(maxLength * sizeof(char)); serializeJson(doc, buff, maxLength); return buff; } void mqttCallback(char *topic, byte *payload, unsigned int length) { String msgTopic = String(topic); // do not listen on topics not subscribed to or on empty topics if(msgTopic.length() == 0 || !msgTopic.equals(getMqttTopic())) { return; } // payload is not null terminated and casting will not work char* msgPayload = (char*) malloc((length +1) * sizeof(char)); snprintf(msgPayload, length + 1, "%s", payload); #ifdef DEBUG Serial.printf("Message received on topic %s with payload %s...\n", topic, msgPayload); #endif // Parse the payload sent to the MQTT topic as a JSON document. DynamicJsonDocument doc(MQTT_PAYLOAD_MAX_LENGTH); #ifdef DEBUG Serial.println("Deserializing message..."); #endif DeserializationError error = deserializeJson(doc, msgPayload); if (error) { #ifdef DEBUG Serial.println("Failed to parse MQTT payload as JSON: " + String(error.c_str())); #endif free(msgPayload); return; } free(msgPayload); // Do not process messages without an action key. if (!doc.containsKey("action")) { return; } String action = String(doc["action"].as<const char*>()); // normalize action action.trim(); action.toUpperCase(); if(action.length() == 0) { #ifdef DEBUG Serial.println("Empty action provided."); #endif return; } DynamicJsonDocument msg(MQTT_PAYLOAD_MAX_LENGTH); msg["execute"] = doc; switch(mqttGpioActionHash(action.c_str())) { case mqttGpioActionHash("SET"): mqttGpioSet(doc); break; case mqttGpioActionHash("GET"): msg = mqttGpioGet(doc); break; case mqttGpioActionHash("DEBOUNCE"): mqttGpioDebounce(doc); break; case mqttGpioActionHash("MEASURE"): msg = mqttGpioMeasure(doc); break; } msgPayload = mqttSerialize(msg, MQTT_PAYLOAD_MAX_LENGTH); mqttClient.publish(getMqttTopic().c_str(), msgPayload); free(msgPayload); } bool mqttConnect() { #ifdef DEBUG Serial.println("Attempting to connect to MQTT broker: " + String(MQTT_HOST)); #endif mqttClient.setServer(MQTT_HOST, MQTT_PORT); DynamicJsonDocument msg(MQTT_PAYLOAD_MAX_LENGTH); if (mqttClient.connect(getMqttId().c_str(), MQTT_USERNAME, MQTT_PASSWORD)) { #ifdef DEBUG Serial.println("Established connection with MQTT broker using client ID: " + getMqttId()); #endif mqttClient.setCallback(mqttCallback); msg["action"] = "connected"; char *payload = mqttSerialize(msg, MQTT_PAYLOAD_MAX_LENGTH); mqttClient.publish(getMqttTopic().c_str(), payload); free(payload); #ifdef DEBUG Serial.println("Attempting to subscribe to MQTT topic: " + getMqttTopic()); #endif if (!mqttClient.subscribe(getMqttTopic().c_str())) { #ifdef DEBUG Serial.println("Failed to subscribe to MQTT topic: " + getMqttTopic()); #endif return false; } #ifdef DEBUG Serial.println("Subscribed to MQTT topic: " + getMqttTopic()); #endif msg["action"] = "subscribed"; payload = mqttSerialize(msg, MQTT_PAYLOAD_MAX_LENGTH); mqttClient.publish(getMqttTopic().c_str(), payload); free(payload); return true; } #ifdef DEBUG Serial.println("Connection to MQTT broker failed with MQTT client state: " + String(mqttClient.state())); #endif return false; } /////////////////////////////////////////////////////////////////////////// // Arduino loop // /////////////////////////////////////////////////////////////////////////// void mqttTickCallback(void) { if(!networkConnected) { return; } // Process MQTT client loop. if (mqttClient.connected()) { mqttClient.loop(); return; } if (!mqttConnect()) { #ifdef DEBUG Serial.printf("Unable to connect to MQTT\n"); #endif } } /////////////////////////////////////////////////////////////////////////// // OTA updates // /////////////////////////////////////////////////////////////////////////// void arduinoOtaTickCallback(void) { ArduinoOTA.handle(); if(!networkConnected) { return; } if(!otaStarted) { ArduinoOTA.begin(); otaStarted = true; } } /////////////////////////////////////////////////////////////////////////// // system-wide reboot // /////////////////////////////////////////////////////////////////////////// void rebootTickCallback(void) { // check if a reboot has been scheduled. if(!rebootPending) { return; } #ifdef DEBUG Serial.printf("Reboot pending, restarting in 1s...\n"); #endif ESP.restart(); } /////////////////////////////////////////////////////////////////////////// // HTTP route handling // /////////////////////////////////////////////////////////////////////////// void handleRootHttpPost(void) { String password; for(int i = 0; i < server.args(); ++i) { if(server.argName(i) == "password") { password = server.arg(i); continue; } } if(!password.equals(PREBOOT_MASTER_PASSWORD)) { server.sendHeader("Location", "/"); server.sendHeader("Cache-Control", "no-cache"); server.send(302); return; } #ifdef DEBUG Serial.println("Authentication succeeded, setting cookie and redirecting."); #endif // clear old authentication cookie if(authenticationCookie != NULL) { free(authenticationCookie); authenticationCookie = NULL; } authenticationCookie = randomStringHex(8); char* buff = (char*) malloc(PREBOOT_COOKIE_MAX_LENGTH * sizeof(char)); snprintf(buff, PREBOOT_COOKIE_MAX_LENGTH, "%s=%s; Max-Age=600; SameSite=Strict", PREBOOT_COOKIE_NAME, authenticationCookie); #ifdef DEBUG Serial.printf("Preboot cookie set to: %s\n", buff); #endif server.sendHeader("Set-Cookie", buff); server.sendHeader("Location", "/setup"); server.sendHeader("Cache-Control", "no-cache"); server.send(302); free(buff); } void handleSetupHttpPost(void) { String espName, staSsid, password; for(int i = 0; i < server.args(); ++i) { if(server.argName(i) == "name") { espName = server.arg(i); continue; } if(server.argName(i) == "Ssid") { staSsid = server.arg(i); continue; } if(server.argName(i) == "password") { password = server.arg(i); continue; } } if(espName == NULL || staSsid == NULL || password == NULL) { server.sendHeader("Location", "/"); server.sendHeader("Cache-Control", "no-cache"); server.send(302); return; } #ifdef DEBUG Serial.printf("Ssid %s and password %s received from web application.\n", staSsid, password); #endif DynamicJsonDocument configuration(CONFIGURATION_MAX_LENGTH); configuration["name"] = espName; configuration["Ssid"] = staSsid; configuration["password"] = password; setConfiguration(CONFIGURATION_FILE_NAME, configuration, CONFIGURATION_MAX_LENGTH); server.send(200, "text/plain", "Parameters applied. Scheduling reboot..."); #ifdef DEBUG Serial.printf("Configuration applied...\n"); #endif rebootPending = true; } void handleRootHttpGet(void) { // send login form #ifdef DEBUG Serial.printf("Sending authentication webpage.\n"); #endif String processTemplate = String(HTML_AUTH_TEMPLATE); server.send(200, "text/html", processTemplate); } void handleSetupHttpGet(void) { DynamicJsonDocument configuration = getConfiguration(CONFIGURATION_FILE_NAME, CONFIGURATION_MAX_LENGTH); String espName = HOSTNAME(); if(configuration.containsKey("name")) { espName = configuration["name"].as<const char*>(); } // send default boot webpage #ifdef DEBUG Serial.printf("Sending configuration form webpage.\n"); #endif String processTemplate = String(HTML_BOOT_TEMPLATE); processTemplate.replace("%AP%", computeTemporarySsid()); processTemplate.replace("%MAC%", getHardwareAddress(':')); processTemplate.replace("%NAME%", espName); server.send(200, "text/html", processTemplate); } void handleRootHttpRequest(void) { switch(server.method()) { case HTTP_GET: handleRootHttpGet(); break; case HTTP_POST: handleRootHttpPost(); break; } } void handleSetupHttpRequest(void) { #ifdef DEBUG Serial.println("HTTP setup request received."); #endif if(!server.hasHeader("Cookie")) { #ifdef DEBUG Serial.println("No cookie header found."); #endif server.sendHeader("Location", "/"); server.sendHeader("Cache-Control", "no-cache"); server.send(302); return; } String cookie = server.header("Cookie"); if(authenticationCookie == NULL || cookie.indexOf(authenticationCookie) == -1) { #ifdef DEBUG Serial.println("Authentication failed."); #endif server.sendHeader("Location", "/"); server.sendHeader("Cache-Control", "no-cache"); server.send(302); return; } switch(server.method()) { case HTTP_GET: #ifdef DEBUG Serial.printf("HTTP GET request received for setup.\n"); #endif handleSetupHttpGet(); break; case HTTP_POST: #ifdef DEBUG Serial.printf("HTTP POST request received for setup.\n"); #endif handleSetupHttpPost(); break; } } void handleHttpNotFound(void) { server.sendHeader("Location", "/"); server.send(302); } /////////////////////////////////////////////////////////////////////////// // LittleFS file operations // /////////////////////////////////////////////////////////////////////////// bool fsWriteFile(fs::FS &fs, const char *path, const char *payload) { #if defined(ARDUINO_ARCH_ESP8266) File file = fs.open(path, "w"); #elif defined(ARDUINO_ARCH_ESP32) File file = fs.open(path, FILE_WRITE); #endif if (!file) { #ifdef DEBUG Serial.println("Failed to open file for writing."); #endif return false; } bool success = file.println(payload); file.close(); return success; } bool fsReadFile(fs::FS &fs, const char *path, char *payload, size_t maxLength) { #if defined(ARDUINO_ARCH_ESP8266) File file = fs.open(path, "r"); #elif defined(ARDUINO_ARCH_ESP32) File file = fs.open(path); #endif if (!file || file.isDirectory()) { #ifdef DEBUG Serial.println("Failed to open file for reading."); #endif return false; } int i = 0; while(file.available() && i < maxLength) { payload[i] = file.read(); ++i; } file.close(); payload[i] = '\0'; return true; } /////////////////////////////////////////////////////////////////////////// // set the current configuration // /////////////////////////////////////////////////////////////////////////// void setConfiguration(const char* configurationFile, DynamicJsonDocument configuration, int bufferSize) { char payload[bufferSize]; serializeJson(configuration, payload, bufferSize); if(!fsWriteFile(LittleFS, configurationFile, payload)) { #ifdef DEBUG Serial.printf("Unable to store configuration.\n"); #endif } } /////////////////////////////////////////////////////////////////////////// // get the current configuration // /////////////////////////////////////////////////////////////////////////// DynamicJsonDocument getConfiguration(const char* configurationFile, int bufferSize) { DynamicJsonDocument configuration(bufferSize); #ifdef DEBUG Serial.printf("Attempting to read configuration...\n"); #endif char* payload = (char *) malloc(bufferSize * sizeof(char)); if (fsReadFile(LittleFS, configurationFile, payload, bufferSize)) { #ifdef DEBUG Serial.printf("Found a valid configuration payload...\n"); #endif DeserializationError error = deserializeJson(configuration, payload); if(error) { #ifdef DEBUG Serial.printf("Deserialization of configuration failed.\n"); #endif } } #ifdef DEBUG Serial.printf("Configuration read complete.\n"); #endif free(payload); return configuration; } /////////////////////////////////////////////////////////////////////////// // generate random string // /////////////////////////////////////////////////////////////////////////// char* randomStringHex(int length) { const char alphabet[] = "0123456789abcdef"; char* payload = (char*) malloc(length * sizeof(char)); int i; for (i=0; i<length; ++i) { payload[i] = alphabet[random(16)]; } payload[i] = '\0'; return payload; } /////////////////////////////////////////////////////////////////////////// // get WiFi MAC address // /////////////////////////////////////////////////////////////////////////// byte* getHardwareAddress(void) { // get mac address byte* mac = (byte *)malloc(6 * sizeof(byte)); #if defined(ARDUINO_ARCH_ESP8266) WiFi.macAddress(mac); #elif defined(ARDUINO_ARCH_ESP32) Network.macAddress(mac); #endif return mac; } /////////////////////////////////////////////////////////////////////////// // convert MAC address to string // /////////////////////////////////////////////////////////////////////////// char* getHardwareAddress(char colon) { byte* mac = getHardwareAddress(); char* buff = (char *)malloc(18 * sizeof(char)); sprintf(buff, "%02x%c%02x%c%02x%c%02x%c%02x%c%02x", mac[0], colon, mac[1], colon, mac[2], colon, mac[3], colon, mac[4], colon, mac[5] ); free(mac); return buff; } /////////////////////////////////////////////////////////////////////////// // get WiFi soft AP // /////////////////////////////////////////////////////////////////////////// String computeTemporarySsid(void) { byte* mac = getHardwareAddress(); String ssid = String(mac[0] ^ mac[1] ^ mac[2] ^ mac[3] ^ mac[4] ^ mac[5], DEC); free(mac); return ssid; } /////////////////////////////////////////////////////////////////////////// // serve WiFi AP // /////////////////////////////////////////////////////////////////////////// void serverWifiTickCallback(void) { if(rebootPending) { return; } // create the boot Ssid String temporarySsid = computeTemporarySsid(); if(WiFi.softAPSSID().equals(temporarySsid)) { // run WiFi server loops server.handleClient(); if(blinkDigitsDahTick.state() == STOPPED) { temporarySsidLength = temporarySsid.length(); temporarySsidNumbers = (int *) malloc(temporarySsidLength * sizeof(int)); for(int i = 0; i < temporarySsidLength; ++i) { temporarySsidNumbers[i] = temporarySsid[i] - '0'; } #ifdef DEBUG //Serial.printf("Started blinking...\n"); #endif temporarySsidIndex = 0; blinkDigitsDahTick.start(); } return; } #ifdef DEBUG Serial.println("Starting HTTP server for Wifi server."); #endif // handle HTTP REST requests server.on("/", handleRootHttpRequest); server.on("/setup", handleSetupHttpRequest); server.onNotFound(handleHttpNotFound); #ifdef DEBUG Serial.println("Ensure HTTP headers are collected by the HTTP server."); #endif #if defined(ARDUINO_ARCH_ESP8266) server.collectHeaders("Cookie"); #elif defined(ARDUINO_ARCH_ESP32) const char* collectHeaders[] = { "Cookie" }; size_t headerkeyssize = sizeof(collectHeaders) / sizeof(char *); server.collectHeaders(collectHeaders, headerkeyssize); #endif // the soft AP (or WiFi) must be started before the HTTP server or it will result in a crash on ESP32 #ifdef DEBUG Serial.println("Starting temporary AP."); #endif WiFi.softAP(temporarySsid, String(), 1, false, 1); #ifdef DEBUG Serial.println("Starting HTTP server."); #endif server.begin(); } /////////////////////////////////////////////////////////////////////////// // connect to WiFi // /////////////////////////////////////////////////////////////////////////// void clientWifiTickCallback(void) { if(rebootPending) { return; } unsigned long callbackCount = clientWifiTick.counter(); #ifdef DEBUG //Serial.printf("Client tick %lu\n", callbackCount); #endif if(callbackCount == 1) { #ifdef DEBUG Serial.printf("Rescheduling client WiFi to check every 10s...\n"); #endif clientWifiTick.interval(WIFI_RETRY_TIMEOUT); clientWifiTick.resume(); } // if WiFi is already connected or a reboot is pending just bail out if(WiFi.status() == WL_CONNECTED) { #ifdef DEBUG Serial.printf("WiFi IP: %s, Subscribed to MQTT topic '%s' on %s\n", WiFi.localIP().toString().c_str(), getMqttTopic().c_str(), MQTT_HOST); #endif connectionTries = 0; networkConnected = true; return; } networkConnected = false; DynamicJsonDocument configuration = getConfiguration(CONFIGURATION_FILE_NAME, CONFIGURATION_MAX_LENGTH); // too many retries so reboot to soft AP if(++connectionTries > WIFI_CONNECT_TRIES) { // zap the Ssid in order to start softAP if(configuration.containsKey("Ssid")) { configuration.remove("Ssid"); } if(configuration.containsKey("password")) { configuration.remove("password"); } setConfiguration(CONFIGURATION_FILE_NAME, configuration, CONFIGURATION_MAX_LENGTH); #ifdef DEBUG Serial.printf("Restarting in 1 second...\n"); #endif rebootPending = true; return; } #ifdef DEBUG Serial.printf("Attempting to establish WiFi STA connecton [%d/%d]\n", (WIFI_CONNECT_TRIES - connectionTries) + 1, WIFI_CONNECT_TRIES); #endif #if defined(ARDUINO_ARCH_ESP8266) WiFi.hostname(configuration["name"].as<String>()); #elif defined(ARDUINO_ARCH_ESP32) WiFi.setHostname(configuration["name"].as<const char*>()); #endif String Ssid = configuration["Ssid"].as<String>(); String password = configuration["password"].as<String>(); #ifdef DEBUG Serial.printf("Trying connection to %s with %s...\n", Ssid, password); #endif WiFi.begin(Ssid, password); } /////////////////////////////////////////////////////////////////////////// // blink the temporary Ssid // /////////////////////////////////////////////////////////////////////////// void blinkDigitsDahTickCallback(void) { // wait for the dits to complete if(blinkDigitsDitTick.state() != STOPPED) { return; } if(temporarySsidIndex >= temporarySsidLength) { blinkDigitsDahTick.stop(); blinkDigitsDitTick.stop(); blinkDigitsBlinkTick.stop(); free(temporarySsidNumbers); #ifdef DEBUG Serial.println(); Serial.println("Dah-dit blink sequence completed."); #endif return; } #ifdef DEBUG Serial.printf("Starting to blink %d times: ", temporarySsidNumbers[temporarySsidIndex]); #endif pinMode(LED_BUILTIN, OUTPUT); digitalWrite(LED_BUILTIN, LOW); blinkDigitsDitTick.start(); } void blinkDigitsDitTickCallback(void) { #ifdef DEBUG Serial.printf("Dit: %d/%d\n", blinkDigitsDitTick.counter(), temporarySsidNumbers[temporarySsidIndex]); #endif if(blinkDigitsDitTick.counter() > temporarySsidNumbers[temporarySsidIndex]) { blinkDigitsDitTick.stop(); ++temporarySsidIndex; #ifdef DEBUG Serial.println("Dits completed..."); #endif return; } blinkDigitsDitTick.pause(); blinkDigitsBlinkTick.start(); } void blinkDigitsBlinkTickCallback(void) { if(blinkDigitsBlinkTick.counter() > 2) { blinkDigitsBlinkTick.stop(); blinkDigitsDitTick.resume(); return; } blinkLedState = !blinkLedState; digitalWrite(LED_BUILTIN, blinkLedState); }