29th of September 2024
The template is based on the wifipreboot template and implements a captive portal-like environment to configure the initial WiFi network, OTA and then obsoletes the older esp-pin-toggle
and esp-pin-toggle-analog
templates by making the features of both those templates available in one single all-encompassing template.
The template must be configured in order to set the master password at the top and preferably configure MQTT such that when the template connects to the WiFi network it will be able to connect and subscribe to an MQTT broker. In case no MQTT topic is configured by editing the template header, then the template will subscribe to the MQTT broker on the same topic name as the name that will be configured for the device via the WiFi preboot environment. That being said, after configuring, the template can be flashed to an ESP32 or an ESP8266 device and after a reset, the template will start flashing the AP code required to connect to. By connecting to the AP named after the number that corresponds to the blink sequence of the ESP built-in LED, the template can be configured to connect to a WiFi network.
Upon connect and subscribe, the template will send a message to the MQTT topic indicating that the device has just connected and subscribed to the MQTT topic and is ready to process requests. From then on, it is a matter of sending specific JSON payloads to the MQTT topic that the template is listening on in order to make the template either trigger GPIO pins, read digital pins or measure the value of analog pins. Here is a table of actions available, the possible options and an example for each:
Action | Parameter | Possible Value | Description | Example JSON |
---|---|---|---|---|
get | pin | any digital pin number | get the digital level of a GPIO pin indicated by pin | { "action": "get", "pin": 4 } |
set | pin | any digital pin number | set the digital level of a pin depending on the state parameter to either HIGH (on ) or LOW (off ) | { "action": "set", "pin": 4, "state": "on" } |
state | on , off | |||
debounce | pin | any digital pin number | the debounce action can be used to simulate a digital button press for devices and gadgets that require simulating pushing and releasing a button with a certain time interval between the two (ie: long-press); the action allows to specify sleep , the amount of time between the figurative press and release, as well as mode set to either HTL or LTH meaning setting the digital pin level from HIGHT to LOW, respectively LOW to HIGH with HTL being the default | { "pin": "2", "sleep": "2500", "action": "debounce" } |
sleep | an amount of time to sleep between toggling the pin between HIGH or LOW | |||
mode | HTL from HIGH to LOW, or LTH from LOW to HIGH | |||
measure | pin | any analog pin number | get the analog value of the GPIO pin indicated by pin | { "action": "measure", "pin": 0 } |
interrupt | pin | any digital pin number that can be used as an interrupt pin | set up an interrupt for pin number pin | { "action": "interrupt", "pin": 12, "state": "start", "mode": "falling" } |
state | either start or stop | |||
mode | can be low , change , rising , falling or high |
Upon publishing the payload, the template will respond on the same topic using a matching JSON payload containing the results and the execute
key set to the original JSON payload that was sent by the user for the purpose of linearizing requests and responses.
/////////////////////////////////////////////////////////////////////////// // Copyright (C) Wizardry and Steamworks 2024 - License: GNU MIT // // Please see: http://www.gnu.org/licenses/gpl.html for legal details, // // rights of fair usage, the disclaimer and warranty conditions. // /////////////////////////////////////////////////////////////////////////// // As it is very much needed sometimes to manipulate GPIO pins, and then // // by combining the wifipreboot environment, the following template for // // the Arduino can be used to manipulate GPIO pins on the low level via // // a common MQTT broker that the template is meant to connect to. // // // // The full documentation can be found on: // // * https://grimore.org/arduino/gpio_tool // /////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////// // configurable parameters // /////////////////////////////////////////////////////////////////////////// // comment out to enable debugging //#define DEBUG 1 // set the master password for OTA updates and access to the soft AP #define PREBOOT_MASTER_PASSWORD "" // the name and length of the cookie to use for authentication #define PREBOOT_COOKIE_NAME "ArduinoPrebootCookie" #define PREBOOT_COOKIE_MAX_LENGTH 256 // timeout to establish STA connection in milliseconds #define WIFI_RETRY_TIMEOUT 1000 * 10 // retries as multiples of WIFI_RETRY_TIMEOUT milliseconds #define WIFI_CONNECT_TRIES 60 // how much time to wait for a client to reconfigure before switching to client mode again #define WIFI_SERVER_TIMEOUT 1000 * 60 * 3 // the time between blinking a single digit #define BLINK_DIT_LENGTH 250 // the time between blinking the whole number #define BLINK_DAH_LENGTH 2500 // GPIO application // The MQTT broker to connect to. #define MQTT_HOST "" // The MQTT broker username. #define MQTT_USERNAME "" // The MQTT broker password. #define MQTT_PASSWORD "" // The MQTT broker port. #define MQTT_PORT 1883 // The MQTT topic #define MQTT_TOPIC "" // Maximal size of an MQTT payload #define MQTT_PAYLOAD_MAX_LENGTH 256 /////////////////////////////////////////////////////////////////////////// // includes // /////////////////////////////////////////////////////////////////////////// #include <DNSServer.h> #if defined(ARDUINO_ARCH_ESP32) #include <WiFi.h> #include "esp_mac.h" #include <WebServer.h> #include <ESPmDNS.h> #elif defined(ESP8266) #include <ESP8266WiFi.h> #include <ESP8266mDNS.h> #include <ESP8266WebServer.h> #endif #include <FS.h> #include <LittleFS.h> #include <ArduinoJson.h> // Arduino OTA #include <WiFiUdp.h> #include <ArduinoOTA.h> #include <TickTwo.h> // GPIO application #include <PubSubClient.h> // Platform specific defines. #if defined(ARDUINO_ARCH_ESP8266) #define GET_CHIP_ID() (ESP.getChipId()) #elif defined(ARDUINO_ARCH_ESP32) #define GET_CHIP_ID() ((uint16_t)(ESP.getEfuseMac() >> 32)) #endif #define HOSTNAME() String("esp-" + String(GET_CHIP_ID(), HEX)) #define CONFIGURATION_FILE_NAME "/config.json" #define CONFIGURATION_MAX_LENGTH 1024 /////////////////////////////////////////////////////////////////////////// // function definitions // /////////////////////////////////////////////////////////////////////////// byte* getHardwareAddress(void); char* getHardwareAddress(char colon); String generateTemporarySSID(void); void arduinoOtaTickCallback(void); void blinkDigitsDahTickCallback(void); void blinkDigitsDitTickCallback(void); void blinkDigitsBlinkTickCallback(void); void clientWifiTickCallback(void); void serverWifiTickCallback(void); void handleServerWifi(void); void handleClientWifi(void); bool setConfiguration(const char* configurationFile, JsonDocument& configuration); int getConfiguration(const char* configurationFile, JsonDocument& configuration); void handleRootHttpRequest(void); void handleRootCssRequest(void); void handleSetupHttpRequest(void); void handleRootHttpGet(void); void handleSetupHttpGet(void); void handleRootHttpPost(void); void handleSetupHttpPost(void); void handleHttpNotFound(void); void rebootTickCallback(void); // GPIO application void gpioDebounceTickCallback(void); void gpioInterrupt(int); void gpioInterruptLow(void); void gpioInterruptChange(void); void gpioInterruptRising(void); void gpioInterruptFalling(void); void gpioInterruptHigh(void); void mqttTickCallback(void); String getMqttTopic(void); String getMqttId(void); bool mqttConnect(void); void mqttCallback(char *topic, byte *payload, unsigned int length); void mqttGpioSet(DynamicJsonDocument doc); void mqttGpioInterrupt(DynamicJsonDocument doc); DynamicJsonDocument mqttGpioGet(const DynamicJsonDocument doc); void mqttGpioDebounce(DynamicJsonDocument doc); DynamicJsonDocument mqttGpioMeasure(const DynamicJsonDocument doc); constexpr unsigned int mqttGpioActionHash(const char *s, int off = 0); constexpr unsigned int gpioInterruptModeHash(const char *s, int off = 0); constexpr unsigned int gpioInterruptStateHash(const char *s, int off = 0); char *mqttSerialize(JsonDocument& doc, size_t maxLength); /////////////////////////////////////////////////////////////////////////// // variable declarations // /////////////////////////////////////////////////////////////////////////// IPAddress softAPAddress(8, 8, 8, 8); IPAddress softAPNetmask(255, 255, 255, 0); DNSServer dnsServer; #if defined(ARDUINO_ARCH_ESP8266) ESP8266WebServer server(80); #elif defined(ARDUINO_ARCH_ESP32) WebServer server(80); #endif TickTwo arduinoOtaTick(arduinoOtaTickCallback, 1000); TickTwo rebootTick(rebootTickCallback, 1000); TickTwo clientWifiTick(clientWifiTickCallback, 25); TickTwo serverWifiTick(serverWifiTickCallback, 250); TickTwo blinkDigitsDahTick(blinkDigitsDahTickCallback, BLINK_DAH_LENGTH); TickTwo blinkDigitsDitTick(blinkDigitsDitTickCallback, BLINK_DIT_LENGTH); TickTwo blinkDigitsBlinkTick(blinkDigitsBlinkTickCallback, 25); enum bootMode : int { BOOT_MODE_NONE = 0, BOOT_MODE_CLIENT, BOOT_MODE_SERVER }; char* authenticationCookie = NULL; bool otaStarted; bool otaInProgress; bool networkConnected; int clientConnectionTries; bool rebootPending; int temporarySSIDLength; int temporarySSIDIndex; int* temporarySSIDNumbers; int blinkLedState; // GPIO application WiFiClient espClient; PubSubClient mqttClient(espClient); // GPIO application TickTwo gpioDebounceTick(gpioDebounceTickCallback, 25, 1); TickTwo mqttTick(mqttTickCallback, 250); // GPIO application int gpioDebouncePin; int gpioDebounceSleep; String gpioDebounceMode; String mqttTopicCache; String mqttIdCache; /////////////////////////////////////////////////////////////////////////// // HTML & CSS templates // /////////////////////////////////////////////////////////////////////////// const char* GENERIC_CSS_TEMPLATE = R"html( * { box-sizing: border-box; } body { background-color: #3498db; font-family: "Arial", sans-serif; padding: 50px; } .container { margin: 20px auto; padding: 10px; width: 300px; height: 100%; background-color: #fff; border-radius: 5px; margin-left: auto; margin-right: auto; } h1 { width: 70%; color: #777; font-size: 32px; margin: 28px auto; text-align: center; } form { text-align: center; } input { padding: 12px 0; margin-bottom: 10px; border-radius: 3px; border: 2px solid transparent; text-align: center; width: 90%; font-size: 16px; transition: border 0.2s, background-color 0.2s; } form .field { background-color: #ecf0f1; } form .field:focus { border: 2px solid #3498db; } form .btn { background-color: #3498db; color: #fff; line-height: 25px; cursor: pointer; } form .btn:hover, form .btn:active { background-color: #1f78b4; border: 2px solid #1f78b4; } .pass-link { text-align: center; } .pass-link a:link, .pass-link a:visited { font-size: 12px; color: #777; } table { border: 1px solid #dededf; border-collapse: collapse; border-spacing: 1px; margin-left: auto; margin-right: auto; width: 80%; } td { border: 1px solid #dededf; background-color: #ffffff; color: #000000; padding: 1em; } )html"; const char* HTML_SETUP_TEMPLATE = R"html( <!DOCTYPE html> <html lang="en"> <head> <title>setup</title> <link rel="stylesheet" href="/style.css"> </head> <body> <div class="container"> <h1>setup</h1> <table> <tr> <td>AP</td> <td>%AP%</td> </tr> <tr> <td>MAC</td> <td>%MAC%</td> </tr> </table> <br> <form method="POST" action="/setup"> <label for="name">Name</label> <input id="name" type="text" name="name" value="%NAME%" class="field"> <label for="Ssid">SSID</label> <input id="Ssid" type="text" name="Ssid" class="field"> <label for="password">Password</label> <input id="password" type="password" name="password" class="field"> <input type="submit" value="login" class="btn"> </form> </div> </body> </html> )html"; const char* HTML_AUTH_TEMPLATE = R"html( <!DOCTYPE html> <html lang="en"> <head> <title>Preboot Access</title> <link rel="stylesheet" href="/style.css"> </head> <body> <div class="container"> <h1>admin</h1> <form method="POST"> <input id="password" type="password" name="password" class="field" placeholder="password"> <input type="submit" value="login" class="btn"> </form> </div> </body> </html> )html"; /////////////////////////////////////////////////////////////////////////// // begin Arduino // /////////////////////////////////////////////////////////////////////////// void setup() { #ifdef DEBUG Serial.begin(115200); // wait for serial while (!Serial) { delay(100); } Serial.println(); #else Serial.end(); #endif #ifdef DEBUG Serial.println("Mounting filesystem..."); #endif #if defined(ARDUINO_ARCH_ESP8266) if (!LittleFS.begin()) { #ifdef DEBUG Serial.println("LittleFS mount failed, formatting and rebooting..."); #endif LittleFS.format(); delay(1000); ESP.restart(); #elif defined(ARDUINO_ARCH_ESP32) if (!LittleFS.begin(true)) { #endif #ifdef DEBUG Serial.println("LittleFS mount & format failed..."); #endif return; } #ifdef DEBUG Serial.printf("Checking if WiFi server must be started...\n"); #endif // check if Ssid is set and start soft AP or STA mode DynamicJsonDocument configuration(CONFIGURATION_MAX_LENGTH); if(getConfiguration(CONFIGURATION_FILE_NAME, configuration) == -1) { #ifdef DEBUG Serial.println("Unable to retrieve configuration."); #endif delay(60000); ESP.restart(); return; } switch(configuration["boot"].as<int>()) { case BOOT_MODE_CLIENT: #ifdef DEBUG Serial.printf("Client connecting to WiFi...\n"); #endif clientWifiTick.start(); break; case BOOT_MODE_SERVER: case BOOT_MODE_NONE: #ifdef DEBUG Serial.printf("Server AP starting...\n"); #endif // start soft AP rebootTick.start(); serverWifiTick.start(); break; } // setup OTA ArduinoOTA.setHostname(configuration["name"].as<const char*>()); // allow flashing with the master password ArduinoOTA.setPassword(PREBOOT_MASTER_PASSWORD); ArduinoOTA.onStart([]() { // mark OTA as started otaInProgress = true; // stop LittleFS as per the documentation LittleFS.end(); String type; if (ArduinoOTA.getCommand() == U_FLASH) { type = "sketch"; } else { // U_FS type = "filesystem"; } // NOTE: if updating FS this would be the place to unmount FS using FS.end() #ifdef DEBUG Serial.println("Start updating " + type); #endif }); ArduinoOTA.onEnd([]() { otaInProgress = false; #ifdef DEBUG Serial.println("\nEnd"); #endif // restart the device #ifdef DEBUG Serial.printf("Restarting ESP.\n"); #endif delay(1000); ESP.restart(); }); ArduinoOTA.onProgress([](unsigned int progress, unsigned int total) { #ifdef DEBUG Serial.printf("Progress: %u%%\r", (progress / (total / 100))); #endif }); ArduinoOTA.onError([](ota_error_t error) { #ifdef DEBUG Serial.printf("Error[%u]: ", error); #endif if (error == OTA_AUTH_ERROR) { #ifdef DEBUG Serial.println("Auth Failed"); #endif } else if (error == OTA_BEGIN_ERROR) { #ifdef DEBUG Serial.println("Begin Failed"); #endif } else if (error == OTA_CONNECT_ERROR) { #ifdef DEBUG Serial.println("Connect Failed"); #endif } else if (error == OTA_RECEIVE_ERROR) { #ifdef DEBUG Serial.println("Receive Failed"); #endif } else if (error == OTA_END_ERROR) { #ifdef DEBUG Serial.println("End Failed"); #endif } }); // start timers / threads arduinoOtaTick.start(); rebootTick.start(); // GPIO application mqttTick.start(); } void loop() { arduinoOtaTick.update(); rebootTick.update(); clientWifiTick.update(); serverWifiTick.update(); blinkDigitsDitTick.update(); blinkDigitsDahTick.update(); blinkDigitsBlinkTick.update(); // GPIO application gpioDebounceTick.update(); mqttTick.update(); } /////////////////////////////////////////////////////////////////////////// // end Arduino // /////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////// // GPIO-MQTT // /////////////////////////////////////////////////////////////////////////// constexpr unsigned int mqttGpioActionHash(const char *s, int off) { return !s[off] ? 5381 : (mqttGpioActionHash(s, off+1)*33) ^ s[off]; } constexpr unsigned int gpioInterruptModeHash(const char *s, int off) { return !s[off] ? 5381 : (gpioInterruptModeHash(s, off+1)*33) ^ s[off]; } constexpr unsigned int gpioInterruptStateHash(const char *s, int off) { return !s[off] ? 5381 : (gpioInterruptStateHash(s, off+1)*33) ^ s[off]; } void gpioDebounceTickCallback(void) { gpioDebounceTick.pause(); #ifdef DEBUG Serial.printf("Pin %d debounce.\n", gpioDebouncePin); #endif switch(mqttGpioActionHash(gpioDebounceMode.c_str())) { case mqttGpioActionHash("LTH"): digitalWrite(gpioDebouncePin, HIGH); break; default: digitalWrite(gpioDebouncePin, LOW); break; } } String getMqttTopic(void) { // store the MQTT topic in a global varible to prevent redundant CPU usage if(mqttTopicCache == NULL || mqttTopicCache.length() == 0) { mqttTopicCache = String(MQTT_TOPIC); if(mqttTopicCache == NULL || mqttTopicCache.length() == 0) { DynamicJsonDocument configuration(CONFIGURATION_MAX_LENGTH); if(getConfiguration(CONFIGURATION_FILE_NAME, configuration) == -1) { #ifdef DEBUG Serial.println("Unable to retrieve configuration."); #endif return mqttTopicCache; } if(configuration.containsKey("name")) { mqttTopicCache = configuration["name"].as<String>(); } } } return mqttTopicCache; } String getMqttId(void) { // store the MQTT id in a global varible to prevent redundant CPU usage if(mqttIdCache == NULL || mqttIdCache.length() == 0) { mqttIdCache = String(HOSTNAME()); if(mqttIdCache == NULL || mqttIdCache.length() == 0) { DynamicJsonDocument configuration(CONFIGURATION_MAX_LENGTH); if(getConfiguration(CONFIGURATION_FILE_NAME, configuration) == -1) { #ifdef DEBUG Serial.println("Unable to retrieve configuration."); #endif return mqttIdCache; } if(configuration.containsKey("name")) { mqttIdCache = configuration["name"].as<String>(); } } } return mqttIdCache; } void gpioInterrupt(int interruptMode) { if (!mqttClient.connected()) { return; } DynamicJsonDocument msg(MQTT_PAYLOAD_MAX_LENGTH); msg["interrupt"] = interruptMode; char* msgPayload = mqttSerialize(msg, MQTT_PAYLOAD_MAX_LENGTH); mqttClient.publish(getMqttTopic().c_str(), msgPayload); free(msgPayload); } void gpioInterruptLow() { gpioInterrupt(LOW); } void gpioInterruptChange() { gpioInterrupt(CHANGE); } void gpioInterruptRising() { gpioInterrupt(RISING); } void gpioInterruptFalling() { gpioInterrupt(FALLING); } void gpioInterruptHigh() { gpioInterrupt(HIGH); } void mqttGpioInterrupt(DynamicJsonDocument doc) { const int pin = doc["pin"].as<const int>(); int interrupt = digitalPinToInterrupt(pin); if(interrupt == -1) { #ifdef DEBUG Serial.printf("Failed resolving pin %d to interrupt.\n", pin); #endif return; } String interruptState = String(doc["state"].as<const char*>()); switch(gpioInterruptStateHash(interruptState.c_str())) { case gpioInterruptStateHash("STOP"): detachInterrupt(pin); break; case gpioInterruptStateHash("START"): String interruptMode = String(doc["mode"].as<const char*>()); // normalize mode interruptMode.trim(); interruptMode.toUpperCase(); if(interruptMode.length() == 0) { #ifdef DEBUG Serial.println("Empty mode provided."); #endif return; } #ifdef DEBUG Serial.printf("Setting pin %d to interrupt mode %s\n", pin, interruptMode); #endif switch(gpioInterruptModeHash(interruptMode.c_str())) { case gpioInterruptModeHash("LOW"): attachInterrupt(interrupt, gpioInterruptLow, LOW); break; case gpioInterruptModeHash("CHANGE"): attachInterrupt(interrupt, gpioInterruptChange, CHANGE); break; case gpioInterruptModeHash("RISING"): attachInterrupt(interrupt, gpioInterruptRising, RISING); break; case gpioInterruptModeHash("FALLING"): attachInterrupt(interrupt, gpioInterruptFalling, FALLING); break; case gpioInterruptModeHash("HIGH"): attachInterrupt(interrupt, gpioInterruptHigh, HIGH); break; } break; } } void mqttGpioSet(DynamicJsonDocument doc) { String state = doc["state"].as<const char *>(); const int pin = doc["pin"].as<const int>(); #ifdef DEBUG Serial.printf("Setting pin %d to state %s...\n", pin, state); #endif pinMode(pin, OUTPUT); if (state == "on") { digitalWrite(pin, HIGH); int pinStatus = digitalRead(pin); #ifdef DEBUG Serial.printf("Pin %d state is now %d.\n", pin, pinStatus); #endif return; } digitalWrite(pin, LOW); int pinStatus = digitalRead(pin); #ifdef DEBUG Serial.printf("Pin %s state is now %d.\n", pinStatus); #endif } void mqttGpioDebounce(DynamicJsonDocument doc) { gpioDebounceSleep = doc["sleep"].as<const int>(); gpioDebouncePin = doc["pin"].as<const int>(); if(doc.containsKey("mode")) { gpioDebounceMode = String(doc["mode"].as<const char*>()); gpioDebounceMode.trim(); gpioDebounceMode.toUpperCase(); } #ifdef DEBUG Serial.printf("Pin %d bounce.\n", gpioDebouncePin); #endif pinMode(gpioDebouncePin, OUTPUT); switch(mqttGpioActionHash(gpioDebounceMode.c_str())) { case mqttGpioActionHash("LTH"): digitalWrite(gpioDebouncePin, LOW); break; default: digitalWrite(gpioDebouncePin, HIGH); break; } #ifdef DEBUG Serial.printf("Debouncing pin %d with sleep %d and mode %s.\n", gpioDebouncePin, gpioDebounceSleep, gpioDebounceMode.c_str()); #endif gpioDebounceTick.interval(gpioDebounceSleep); gpioDebounceTick.resume(); } DynamicJsonDocument mqttGpioGet(const DynamicJsonDocument doc) { const int pin = doc["pin"].as<const int>(); #ifdef DEBUG Serial.printf("Getting pin: %d state.\n", pin); #endif pinMode(pin, INPUT); int pinStatus = digitalRead(pin); #ifdef DEBUG Serial.printf("Pin %d state is %d.\n", pin, pinStatus); #endif // Announce the action. DynamicJsonDocument msg(MQTT_PAYLOAD_MAX_LENGTH); msg["pin"] = pin; switch (pinStatus) { case 1: msg["state"] = "on"; break; case 0: msg["state"] = "off"; break; default: msg["state"] = "unknown"; break; } return msg; } DynamicJsonDocument mqttGpioMeasure(const DynamicJsonDocument doc) { const int pin = doc["pin"].as<const int>(); #ifdef DEBUG Serial.printf("Getting analog pin %d state...\n", pin); #endif pinMode(pin, INPUT_PULLUP); float analogValue = analogRead(pin); #ifdef DEBUG Serial.printf("Value of analog pin %d is %f.\n", pin, analogValue); #endif // Announce the analog value. DynamicJsonDocument msg(MQTT_PAYLOAD_MAX_LENGTH); msg["pin"] = pin; msg["value"] = analogValue; return msg; } char *mqttSerialize(JsonDocument& doc, size_t maxLength) { char* buff = (char*) malloc(maxLength * sizeof(char)); size_t bytesWritten = serializeJson(doc, buff, maxLength); #ifdef DEBUG Serial.printf("Written bytes %d vs. document bytes %d\n", bytesWritten, measureJson(doc)); #endif if(bytesWritten != measureJson(doc)) { free(buff); return NULL; } return buff; } void mqttCallback(char *topic, byte *payload, unsigned int length) { String msgTopic = String(topic); // do not listen on topics not subscribed to or on empty topics if(msgTopic.length() == 0) { return; } // only listen on the topic that has been subscribed to if(!msgTopic.equals(mqttTopicCache)) { return; } // payload is not null terminated and casting will not work char* msgPayload = (char*) malloc((length +1) * sizeof(char)); snprintf(msgPayload, length + 1, "%s", payload); #ifdef DEBUG Serial.printf("Message received on topic %s with payload %s...\n", topic, msgPayload); #endif // Parse the payload sent to the MQTT topic as a JSON document. DynamicJsonDocument doc(MQTT_PAYLOAD_MAX_LENGTH); #ifdef DEBUG Serial.println("Deserializing message..."); #endif DeserializationError error = deserializeJson(doc, msgPayload); if (error) { #ifdef DEBUG Serial.println("Failed to parse MQTT payload as JSON: " + String(error.c_str())); #endif free(msgPayload); return; } free(msgPayload); // Do not process messages without an action key. if (!doc.containsKey("action")) { return; } String action = String(doc["action"].as<const char*>()); // normalize action action.trim(); action.toUpperCase(); if(action.length() == 0) { #ifdef DEBUG Serial.println("Empty action provided."); #endif return; } DynamicJsonDocument msg(MQTT_PAYLOAD_MAX_LENGTH); msg["execute"] = doc; switch(mqttGpioActionHash(action.c_str())) { case mqttGpioActionHash("SET"): mqttGpioSet(doc); break; case mqttGpioActionHash("GET"): msg = mqttGpioGet(doc); break; case mqttGpioActionHash("DEBOUNCE"): mqttGpioDebounce(doc); break; case mqttGpioActionHash("MEASURE"): msg = mqttGpioMeasure(doc); break; case mqttGpioActionHash("INTERRUPT"): mqttGpioInterrupt(doc); break; } msgPayload = mqttSerialize(msg, MQTT_PAYLOAD_MAX_LENGTH); mqttClient.publish(getMqttTopic().c_str(), msgPayload); free(msgPayload); } bool mqttConnect(void) { #ifdef DEBUG Serial.println("Attempting to connect to MQTT broker: " + String(MQTT_HOST)); #endif mqttClient.setServer(MQTT_HOST, MQTT_PORT); DynamicJsonDocument msg(MQTT_PAYLOAD_MAX_LENGTH); if (mqttClient.connect(getMqttId().c_str(), MQTT_USERNAME, MQTT_PASSWORD)) { #ifdef DEBUG Serial.println("Established connection with MQTT broker using client ID: " + getMqttId()); #endif mqttClient.setCallback(mqttCallback); msg["action"] = "connected"; char *payload = mqttSerialize(msg, MQTT_PAYLOAD_MAX_LENGTH); mqttClient.publish(getMqttTopic().c_str(), payload); free(payload); #ifdef DEBUG Serial.println("Attempting to subscribe to MQTT topic: " + getMqttTopic()); #endif if (!mqttClient.subscribe(getMqttTopic().c_str())) { #ifdef DEBUG Serial.println("Failed to subscribe to MQTT topic: " + getMqttTopic()); #endif return false; } #ifdef DEBUG Serial.println("Subscribed to MQTT topic: " + getMqttTopic()); #endif msg["action"] = "subscribed"; payload = mqttSerialize(msg, MQTT_PAYLOAD_MAX_LENGTH); mqttClient.publish(getMqttTopic().c_str(), payload); free(payload); return true; } #ifdef DEBUG Serial.println("Connection to MQTT broker failed with MQTT client state: " + String(mqttClient.state())); #endif return false; } /////////////////////////////////////////////////////////////////////////// // Arduino loop // /////////////////////////////////////////////////////////////////////////// void mqttTickCallback(void) { if(!networkConnected) { return; } // Process MQTT client loop. if (mqttClient.connected()) { mqttClient.loop(); return; } if (!mqttConnect()) { #ifdef DEBUG Serial.printf("Unable to connect to MQTT\n"); #endif } } /////////////////////////////////////////////////////////////////////////// // OTA updates // /////////////////////////////////////////////////////////////////////////// void arduinoOtaTickCallback(void) { ArduinoOTA.handle(); if(!networkConnected) { return; } if(!otaStarted) { ArduinoOTA.begin(); otaStarted = true; } } /////////////////////////////////////////////////////////////////////////// // system-wide reboot // /////////////////////////////////////////////////////////////////////////// void rebootTickCallback(void) { // if not reboot hasbeen scheduled then just return if(!rebootPending) { return; } #ifdef DEBUG Serial.printf("Stopping filesystem...\n"); #endif #ifdef DEBUG LittleFS.end(); #endif #ifdef DEBUG Serial.printf("Rebooting...\n"); #endif ESP.restart(); } /////////////////////////////////////////////////////////////////////////// // HTTP route handling // /////////////////////////////////////////////////////////////////////////// void handleRootHttpPost(void) { String password; for(int i = 0; i < server.args(); ++i) { if(server.argName(i) == "password") { password = server.arg(i); continue; } } if(!password.equals(PREBOOT_MASTER_PASSWORD)) { server.sendHeader("Location", "/"); server.sendHeader("Cache-Control", "no-cache"); server.send(302); return; } #ifdef DEBUG Serial.println("Authentication succeeded, setting cookie and redirecting."); #endif // clear old authentication cookie if(authenticationCookie != NULL) { free(authenticationCookie); authenticationCookie = NULL; } authenticationCookie = randomStringHex(8); char* buff = (char*) malloc(PREBOOT_COOKIE_MAX_LENGTH * sizeof(char)); snprintf(buff, PREBOOT_COOKIE_MAX_LENGTH, "%s=%s; Max-Age=600; SameSite=Strict", PREBOOT_COOKIE_NAME, authenticationCookie); #ifdef DEBUG Serial.printf("Preboot cookie set to: %s\n", buff); #endif server.sendHeader("Set-Cookie", buff); server.sendHeader("Location", "/setup"); server.sendHeader("Cache-Control", "no-cache"); server.send(302); free(buff); } void handleSetupHttpPost(void) { String espName, staSsid, password; for(int i = 0; i < server.args(); ++i) { if(server.argName(i) == "name") { espName = server.arg(i); continue; } if(server.argName(i) == "Ssid") { staSsid = server.arg(i); continue; } if(server.argName(i) == "password") { password = server.arg(i); continue; } } if(espName == NULL || staSsid == NULL || password == NULL) { server.sendHeader("Location", "/"); server.sendHeader("Cache-Control", "no-cache"); server.send(302); return; } #ifdef DEBUG Serial.printf("Ssid %s and password %s received from web application.\n", staSsid, password); #endif DynamicJsonDocument configuration(CONFIGURATION_MAX_LENGTH); configuration["name"] = espName; configuration["Ssid"] = staSsid; configuration["password"] = password; configuration["boot"] = BOOT_MODE_CLIENT; if(!setConfiguration(CONFIGURATION_FILE_NAME, configuration)) { #ifdef DEBUG Serial.printf("Failed to write configuration.\n"); #endif server.sendHeader("Location", "/setup"); server.sendHeader("Cache-Control", "no-cache"); server.send(307); return; } server.send(200, "text/plain", "Parameters applied. Scheduling reboot..."); #ifdef DEBUG Serial.printf("Configuration applied...\n"); #endif rebootPending = true; } void handleRootHttpGet(void) { // send login form #ifdef DEBUG Serial.printf("Sending authentication webpage.\n"); #endif String processTemplate = String(HTML_AUTH_TEMPLATE); server.send(200, "text/html", processTemplate); } void handleSetupHttpGet(void) { DynamicJsonDocument configuration(CONFIGURATION_MAX_LENGTH); if(getConfiguration(CONFIGURATION_FILE_NAME, configuration) == -1) { #ifdef DEBUG Serial.println("Unable to retrieve configuration."); #endif server.sendHeader("Location", "/setup"); server.sendHeader("Cache-Control", "no-cache"); server.send(307); } String espName = HOSTNAME(); if(configuration.containsKey("name")) { espName = configuration["name"].as<const char*>(); } // send default boot webpage #ifdef DEBUG Serial.printf("Sending configuration form webpage.\n"); #endif String processTemplate = String(HTML_SETUP_TEMPLATE); processTemplate.replace("%AP%", generateTemporarySSID()); processTemplate.replace("%MAC%", getHardwareAddress(':')); processTemplate.replace("%NAME%", espName); server.send(200, "text/html", processTemplate); } void handleRootHttpRequest(void) { switch(server.method()) { case HTTP_GET: handleRootHttpGet(); break; case HTTP_POST: handleRootHttpPost(); break; } } void handleRootCssRequest(void) { if(server.method() != HTTP_GET) { handleHttpNotFound(); return; } #ifdef DEBUG Serial.println("Sending stylesheet..."); #endif String rootCss = String(GENERIC_CSS_TEMPLATE); server.send(200, "text/css", rootCss); } void handleSetupHttpRequest(void) { #ifdef DEBUG Serial.println("HTTP setup request received."); #endif if(!server.hasHeader("Cookie")) { #ifdef DEBUG Serial.println("No cookie header found."); #endif server.sendHeader("Location", "/"); server.sendHeader("Cache-Control", "no-cache"); server.send(302); return; } String cookie = server.header("Cookie"); if(authenticationCookie == NULL || cookie.indexOf(authenticationCookie) == -1) { #ifdef DEBUG Serial.println("Authentication failed."); #endif server.sendHeader("Location", "/"); server.sendHeader("Cache-Control", "no-cache"); server.send(302); return; } switch(server.method()) { case HTTP_GET: #ifdef DEBUG Serial.printf("HTTP GET request received for setup.\n"); #endif handleSetupHttpGet(); break; case HTTP_POST: #ifdef DEBUG Serial.printf("HTTP POST request received for setup.\n"); #endif handleSetupHttpPost(); break; } } void handleHttpNotFound(void) { server.sendHeader("Cache-Control", "no-cache"); server.send(404); } /////////////////////////////////////////////////////////////////////////// // set the current configuration // /////////////////////////////////////////////////////////////////////////// bool setConfiguration(const char* configurationFile, JsonDocument& configuration) { #if defined(ARDUINO_ARCH_ESP8266) File file = LittleFS.open(configurationFile, "w"); #elif defined(ARDUINO_ARCH_ESP32) File file = LittleFS.open(configurationFile, FILE_WRITE); #endif if(!file) { #ifdef DEBUG Serial.println("Failed to open file for writing."); #endif return false; } size_t bytesWritten = serializeJson(configuration, file); file.close(); #ifdef DEBUG Serial.printf("Written bytes %d vs. document bytes %d\n", bytesWritten, measureJson(configuration)); #endif return bytesWritten == measureJson(configuration); } /////////////////////////////////////////////////////////////////////////// // get the current configuration // /////////////////////////////////////////////////////////////////////////// int getConfiguration(const char* configurationFile, JsonDocument& configuration) { #if defined(ARDUINO_ARCH_ESP8266) File file = LittleFS.open(configurationFile, "r"); #elif defined(ARDUINO_ARCH_ESP32) File file = LittleFS.open(configurationFile); #endif if (!file) { #ifdef DEBUG Serial.println("Failed to open file for reading."); #endif return false; } DeserializationError error = deserializeJson(configuration, file); file.close(); if(error) { #ifdef DEBUG Serial.printf("Deserialization failed with error %s\n", error.c_str()); #endif return -1; } return measureJson(configuration); } /////////////////////////////////////////////////////////////////////////// // generate random string // /////////////////////////////////////////////////////////////////////////// char* randomStringHex(int length) { const char alphabet[] = "0123456789abcdef"; char* payload = (char*) malloc(length * sizeof(char)); int i; for (i=0; i<length; ++i) { payload[i] = alphabet[random(16)]; } payload[i] = '\0'; return payload; } /////////////////////////////////////////////////////////////////////////// // get wireless status // /////////////////////////////////////////////////////////////////////////// const char* wl_status_to_string(wl_status_t status) { switch (status) { case WL_NO_SHIELD: return "WL_NO_SHIELD"; case WL_IDLE_STATUS: return "WL_IDLE_STATUS"; case WL_NO_SSID_AVAIL: return "WL_NO_SSID_AVAIL"; case WL_SCAN_COMPLETED: return "WL_SCAN_COMPLETED"; case WL_CONNECTED: return "WL_CONNECTED"; case WL_CONNECT_FAILED: return "WL_CONNECT_FAILED"; case WL_CONNECTION_LOST: return "WL_CONNECTION_LOST"; case WL_DISCONNECTED: return "WL_DISCONNECTED"; #if defined(ARDUINO_ARCH_ESP32) case WL_STOPPED: return "WL_STOPPED"; #endif } return "UNKNOWN"; } /////////////////////////////////////////////////////////////////////////// // get WiFi MAC address // /////////////////////////////////////////////////////////////////////////// byte* getHardwareAddress(void) { // get mac address byte* mac = (byte *)malloc(6 * sizeof(byte)); #if defined(ARDUINO_ARCH_ESP8266) WiFi.macAddress(mac); #elif defined(ARDUINO_ARCH_ESP32) esp_read_mac(mac, ESP_MAC_WIFI_STA); #endif return mac; } /////////////////////////////////////////////////////////////////////////// // convert MAC address to string // /////////////////////////////////////////////////////////////////////////// char* getHardwareAddress(char colon) { byte* mac = getHardwareAddress(); char* buff = (char *)malloc(18 * sizeof(char)); sprintf(buff, "%02x%c%02x%c%02x%c%02x%c%02x%c%02x", mac[0], colon, mac[1], colon, mac[2], colon, mac[3], colon, mac[4], colon, mac[5] ); free(mac); return buff; } /////////////////////////////////////////////////////////////////////////// // get WiFi soft AP // /////////////////////////////////////////////////////////////////////////// String generateTemporarySSID(void) { byte* mac = getHardwareAddress(); String ssid = String(mac[0] ^ mac[1] ^ mac[2] ^ mac[3] ^ mac[4] ^ mac[5], DEC); free(mac); return ssid; } /////////////////////////////////////////////////////////////////////////// // serve WiFi AP // /////////////////////////////////////////////////////////////////////////// void serverWifiTickCallback(void) { if(rebootPending || otaInProgress) { return; } unsigned long callbackTickTime = serverWifiTick.counter() * (serverWifiTick.interval() / 1000); if(callbackTickTime >= WIFI_SERVER_TIMEOUT) { #ifdef DEBUG Serial.println("Server timeout, rebooting...\n"); #endif DynamicJsonDocument configuration(CONFIGURATION_MAX_LENGTH); configuration["boot"] = BOOT_MODE_CLIENT; rebootPending = true; return; } #ifdef DEBUG /* if(callbackTickTime % 1000 == 0 ) { Serial.printf("Time till reboot %.0fs\n", (float)(WIFI_SERVER_TIMEOUT - callbackTickTime)/1000.0); } */ #endif // create the boot SSID String temporarySSID = generateTemporarySSID(); if(WiFi.softAPSSID().equals(temporarySSID)) { // run WiFi server loops dnsServer.processNextRequest(); server.handleClient(); if(blinkDigitsDahTick.state() == STOPPED) { temporarySSIDLength = temporarySSID.length(); temporarySSIDNumbers = (int *) malloc(temporarySSIDLength * sizeof(int)); for(int i = 0; i < temporarySSIDLength; ++i) { temporarySSIDNumbers[i] = temporarySSID[i] - '0'; } temporarySSIDIndex = 0; blinkDigitsDahTick.start(); } return; } #ifdef DEBUG Serial.println("Starting HTTP server for Wifi server."); #endif // handle HTTP REST requests server.on("/", handleRootHttpRequest); server.on("/setup", handleSetupHttpRequest); server.on("/style.css", handleRootCssRequest); // captive portal proprietary junk redirected to webserver root // connectivitycheck.gstatic.com/generate_204 // www.googe.com/gen_204 server.on("/generate_204", handleRootHttpRequest); server.on("/gen_204", handleRootHttpRequest); server.on("/fwlink", handleRootHttpRequest); server.onNotFound(handleHttpNotFound); #ifdef DEBUG Serial.println("Ensure HTTP headers are collected by the HTTP server."); #endif #if defined(ARDUINO_ARCH_ESP8266) server.collectHeaders("Cookie"); #elif defined(ARDUINO_ARCH_ESP32) const char* collectHeaders[] = { "Cookie" }; size_t headerkeyssize = sizeof(collectHeaders) / sizeof(char *); server.collectHeaders(collectHeaders, headerkeyssize); #endif // the soft AP (or WiFi) must be started before the HTTP server or it will result in a crash on ESP32 #ifdef DEBUG Serial.println("Starting temporary AP."); #endif DynamicJsonDocument configuration(CONFIGURATION_MAX_LENGTH); if(getConfiguration(CONFIGURATION_FILE_NAME, configuration) != -1) { #ifdef DEBUG Serial.println("Unable to retrieve configuration."); #endif if (!MDNS.begin(configuration["name"].as<const char*>())) { #ifdef DEBUG Serial.println("Error setting up MDNS responder."); #endif } } WiFi.softAPConfig(softAPAddress, softAPAddress, softAPNetmask); WiFi.softAP(temporarySSID, String(), 1, false, 1); dnsServer.setErrorReplyCode(DNSReplyCode::NoError); dnsServer.start(53, "*", softAPAddress); #ifdef DEBUG Serial.println("Starting HTTP server."); #endif server.begin(); } /////////////////////////////////////////////////////////////////////////// // connect to WiFi // /////////////////////////////////////////////////////////////////////////// void clientWifiTickCallback(void) { if(rebootPending || otaInProgress) { return; } unsigned long callbackCount = clientWifiTick.counter(); #ifdef DEBUG //Serial.printf("Client tick %lu\n", callbackCount); #endif if(callbackCount == 1) { #ifdef DEBUG Serial.printf("Rescheduling client WiFi to check mevery 10s...\n"); #endif clientWifiTick.interval(WIFI_RETRY_TIMEOUT); clientWifiTick.resume(); } // if WiFi is already connected or a reboot is pending just bail out wl_status_t wifiStatus = WiFi.status(); if(wifiStatus == WL_CONNECTED) { #ifdef DEBUG Serial.println("-- MARK --"); #endif clientConnectionTries = 0; networkConnected = true; return; } #ifdef DEBUG Serial.printf("Client WiFi not connected: %d\n", wl_status_to_string(wifiStatus)); #endif networkConnected = false; DynamicJsonDocument configuration(CONFIGURATION_MAX_LENGTH); if(getConfiguration(CONFIGURATION_FILE_NAME, configuration) == -1) { #ifdef DEBUG Serial.println("Unable to retrieve configuration."); #endif return; } // too many retries so reboot to soft AP if(++clientConnectionTries > WIFI_CONNECT_TRIES) { configuration["boot"] = BOOT_MODE_SERVER; if(!setConfiguration(CONFIGURATION_FILE_NAME, configuration)) { #ifdef DEBUG Serial.printf("Failed to write configuration.\n"); #endif } #ifdef DEBUG Serial.printf("Restarting in 1 second...\n"); #endif rebootPending = true; return; } #ifdef DEBUG Serial.printf("Attempting to establish WiFi STA connecton [%d/%d]\n", (WIFI_CONNECT_TRIES - clientConnectionTries) + 1, WIFI_CONNECT_TRIES); #endif #if defined(ARDUINO_ARCH_ESP8266) WiFi.hostname(configuration["name"].as<String>()); #elif defined(ARDUINO_ARCH_ESP32) WiFi.setHostname(configuration["name"].as<const char*>()); #endif if (!MDNS.begin(configuration["name"].as<const char*>())) { #ifdef DEBUG Serial.println("Error setting up MDNS responder."); #endif } String Ssid = configuration["Ssid"].as<String>(); String password = configuration["password"].as<String>(); #ifdef DEBUG Serial.printf("Trying connection to %s with %s...\n", Ssid, password); #endif //WiFi.config(INADDR_NONE, INADDR_NONE, INADDR_NONE); WiFi.begin(Ssid, password); } /////////////////////////////////////////////////////////////////////////// // blink the temporary Ssid // /////////////////////////////////////////////////////////////////////////// void blinkDigitsDahTickCallback(void) { // wait for the dits to complete if(blinkDigitsDitTick.state() != STOPPED) { return; } if(temporarySSIDIndex >= temporarySSIDLength) { blinkDigitsDahTick.stop(); blinkDigitsDitTick.stop(); blinkDigitsBlinkTick.stop(); free(temporarySSIDNumbers); #ifdef DEBUG Serial.println(); Serial.println("Dah-dit blink sequence completed."); #endif return; } #ifdef DEBUG Serial.printf("Starting to blink %d times: ", temporarySSIDNumbers[temporarySSIDIndex]); #endif pinMode(LED_BUILTIN, OUTPUT); digitalWrite(LED_BUILTIN, LOW); blinkDigitsDitTick.start(); } void blinkDigitsDitTickCallback(void) { #ifdef DEBUG Serial.printf("Dit: %d/%d\n", blinkDigitsDitTick.counter(), temporarySSIDNumbers[temporarySSIDIndex]); #endif if(blinkDigitsDitTick.counter() > temporarySSIDNumbers[temporarySSIDIndex]) { blinkDigitsDitTick.stop(); ++temporarySSIDIndex; #ifdef DEBUG Serial.println("Dits completed..."); #endif return; } blinkDigitsDitTick.pause(); blinkDigitsBlinkTick.start(); } void blinkDigitsBlinkTickCallback(void) { if(blinkDigitsBlinkTick.counter() > 2) { blinkDigitsBlinkTick.stop(); blinkDigitsDitTick.resume(); return; } blinkLedState = !blinkLedState; digitalWrite(LED_BUILTIN, blinkLedState); }